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A THEORETICAL INVESTIGATION OF THE INPUT CHARACTERISTICS
OF A RECTANGULAR CAVITY-BACKED SLOT ANTENNA*

C. R. Cockrell
Langley Research Center

SUMMARY

Equations which represent the magnetic and electric stored energies are derived
for an infinite section of rectangular waveguide and a rectangular cavity. These repre-
sentations which are referred to as being "physically observable' are obtained by con-
sidering the difference in the volume integrals appearing in the complex Poynting theorem.
It is shown thatsthe 'physically observable' stored energies are determined by the field
components that vanish in a reference plane outside the aperture.

These "'physically observable' representations are used to compute the input admit-
tance of a rectangular cavity-backed slot antenna in which a single propagating wave is
assumed to exist in the cavity. The slot is excited by a voltage source connected across
its center; a sinusoidal distribution is assumed in the slot. Input-admittance calculations
are compared with measured data. In addition, input-admittance curves as a function of
electrical slot length are presented for several size cavities.

For the rectangular cavity-backed slot antenna, the quality factor and relative band-
width were computed independently by using these energy relationships. It is shown that
the asymptotic relationship which is usually assumed to exist between the quality band-
with and the reciprocal of relative bandwidth is equally valid for the rectangular cavity-
backed slot antenna.

INTRODUCTION

The aperture (or slot) antenna is one of the most widely used antennas because it is
relatively simple to build and can be flush mounted in conducting bodies such as in the
surface of aircraft and spacecraft, thus becoming an integral part of the vehicle. For
such applications the aperture antenna also meets the requirements of small size and low
weight. In addition to its practical usefulness, radiation and impedance characteristics
can be investigated theoretically without too much difficulty (refs. 1 to 3). Such investi-

*The information presented herein was offered as a dissertation in partial fulfill-
ment of the requirements for the Degree of Doctor of Philosophy in Electrical Engineer-
ing, North Carolina State University, Raleigh, North Carolina, May 1974.



gations are usually conducted first for an ideal model such as a narrow slot in a perfect
conductor of infinite extent.

The input admittance Yg (or impedance) of a narrow slot in a perfectly conducting
infinite sheet can be determined via the Booker relationship (ref. 4) whenever the slot is
free to radiate on both sides of the infinite sheet. This relationship, which can be found
in many books (refs. 5 to 8), is given by Yg = 4Zd/Z02 where Z; is the input imped-
ance of the complementary dipole (planar dipole) and Z, is the characteristic imped-
ance of the surrounding medium. In practical applications the slot is backed by some
sort of cavity, thus destroying the symmetry upon which the Booker relationship depends.
The cavity-backed aperture antenna has been the subject of many papers over the past
two decades, or longer (refs. 9 to 13).

When the slot is backed by a cavity on one side of the infinite sheet, the radiation
pattern and impedance characteristics of the slot antenna are altered; the radiation
resistance, the bandwidth, and the stored energy are changed. The impedance properties
of the apertures (and slots) which are backed by a rectangular cavity have been investi-
gated by many authors (refs. 9 to 13). In references 9 and 10 the backing rectangular
cavity was a shorted waveguide whose cross section was the same as that of the aperture;
reference 9 is further restricted to small cavities. In references 11 to 13 the thin slot is
backed by a rectangular cavity of different cross section.

In references 9 and 10 the relationship between quality factor and the reciprocal of
relative bandwidth, known to exist in nonradiating systems, is assumed equally valid for
cavity-backed aperture antennas. Quite often this relationship is assumed for antennas
in general (refs. 14 and 15). In reference 16, quality factor and inverse bandwidth are
related in an order of magnitude sense. The antenna in references 14 and 15 is assumed
to be such that its aperture distribution is frequency independent; hence the frequency
derivative of its reactance or susceptance is shown to be proportional to the total stored
energies. The reciprocal of relative bandwidth would then be equal to quality factor.
For planar antennas in which the aperture distributions are frequency dependent, the
reciprocal of relative bandwidth is proportional to the frequency derivative of the differ-
ence in stored electric and magnetic energies; whereas the quality factor is proportional
to the total stored energy (ref. 17). The "redefined' definition of quality factor given by
Rhodes in reference 18 should be used.

The establishment of a relationship between the quality factor and the reciprocal of
relative bandwidth for the aperture antenna would be of analytical importance in the area
of antenna synthesis (refs. 17 and 18). The evaluation of quality factor is at a single fre-
quency (resonant frequency); whereas the evaluation of relative bandwidth requires a
knowledge of the complete frequency behavior of the antenna. The quality factor and
relative bandwidth for the planar dipole antenna have been shown to be related in a recip-



rocal manner by Rhodes (ref. 17). He established this relationship by calculating the
quality factor and relative bandwidth from independent equations which were based on

his time-average 'physically observable' stored-energy representations. By consider-~
ing the difference of the volume integrals that appear in the complex Poynting theorem,
Rhodes was able to show that the infinities associated with the individual volume integrals
canceled exactly, leaving what he refers to as time-average "physically observable"
stored magnetic and electric energies.

In the present paper, expressions which represent the input admittance, the quality
factor, and the relative bandwidth of the rectangular cavity-backed slot antenna are
derived. For an assumed sinusoidal slot distribution and a single propagating wave in
the cavity, input-admittance calculations are compared with available measured data. In
addition, input-admittance curves as a function of electrical slot length are given for
several size cavities. The primary purpose of this paper, however, is to determine
whether the method of Rhodes implies a reciprocal relationship between the quality fac-
tor and relative bandwidth for a rectangular cavity-backed slot antenna. Thus Rhodes'
concept of time-average "'physically observable' stored energies is used in determining
this relationship. A pair of time-average ''physically observable' stored energies for the
internal part of the antenna (cavity or infinite waveguide) are derived in terms of ampli-
tude coefficients at a reference plane. These coefficients are related to the assumed
sinusoidal distribution in the narrow slot aperture by applying the appropriate boundary
conditions. The cross sectional dimensions of the cavity are chosen so that only one
propagating wave exists. The depth of the cavity is assumed to be deep enough so that
its back wall will not influence the assumed slot distribution.

The external part of the antenna is the half-space. The solution to this part is
given by Rhodes in reference 17 for a slot in an infinite ground plane.

The internal and external parts of the solution are then combined by applying the
complex Poynting theorem to the small volume which is formed by the thickness and the
openings of the slot. This volume encloses a voltage source which is applied across the
center of the slot. As the slot thickness shrinks to zero, the input power equals the sum
of the power which enters the cavity (finite volume) and that which enters the half-space
(infinite volume). Once the internal and external parts have been combined, the input
admittance, the quality factor, and the relative bandwidth are computed numerically for a
number of cavity and slot sizes. The only power loss is from radiation since all the
metallic surfaces are assumed to be perfect conductors and the region inside the cavity
is assumed to be a vacuum.



SYMBOLS

Amn’ana
amplitude coefficients
Cmn,Pmn
Aq,Ag slot aperture (see fig. 2)
a height of waveguide (or cavity)
a' width of slot (see fig. 1)
B input susceptance
B.W. relative bandwidth
b width of waveguide (or cavity)
X
Cin(x) =§ 1-cosu g,
0 u
d depth of waveguide (or cavity)
E electric field

Exa,Eya aperture electric field

i(y) Fourier transform of S(w)
G input conductance

H magnetic field

1 current

:f current density

j = -1

Ky(ay) modified Bessel function of the second kind



k =w\/ﬁ

kx,ky,kZ directional wave numbers

L length of slot (see fig. 1)
2o/ resonant slot length
m,n modal numbers
P, power loss in cavity
P, radiated power
Q quality factor
> S
Si(x) = SO s1:11 Y dqu
S(w) Poisson sum
51,59 surface
t time, sec
v voltage
Vo voltage across center of slot
v volume of cavity
v' volume of semi-~infinite free space
v" volume of slot
<KW >> "physically observable' electric stored energy
<<W,>> "physically observable' magnetic stored energy

X,y,2 Cartesian coordinates of rectangular waveguide



x'y',z' Cartesian coordinates of slot
’y ’

Y input admittance

YS input admittance of slot antenna

Zd input impedance of complementary dipole antenna
Z, characteristic impedance of free space
] depth of slot (see fig. 1)

€ permittivity of free space

A wavelength

U permeability of free space

w angular frequency

Wp angular resonant frequency

Subscripts:

ap aperture

inf infinite waveguide

non nonpropagating wave

pro propagating wave

Asterisks denote complex conjugates.

GENERAL EXPRESSIONS RELATING INPUT ADMITTANCE,
QUALITY FACTOR, AND RELATIVE BANDWIDTH
TO STORED ENERGIES

The rectangular cavity-backed slot antenna is shown in figure 1. The antenna is
divided into two parts: internal and external. The external part of the solution has
already been solved in reference 17. The internal part of the solution is solved in the

6



X'

-z

Perfectly conducting
ground plane of

y Voltage source
infinite extent

V=V0 sin —

2 PRy y'
Figure 1.- Slot backed by a Figure 2.- Slot geometry. (Aperture Ay
rectangular waveguide. empties into half-space and aperture A

empties into the rectangular cavity.)

present paper by using the concept of time-~average '"physically observable' magnetic and

electric stored energies.

However, before determining these energies, the internal and external parts of the
solution are combined by applying the complex Poynting theorem to the slot volume shown

in figure 2. (See ref. 5.) Thus,

e  ANEE RS BT
2Q\EXH.dS ]2w4 H.-H d 2 E.E dv 5 E.J
v'l v'l

-%§§§§ L T* qv=%§gﬁxﬁ* . (-% dx' dy") +%5Sﬁxﬁ* - (+2 ax' dy")
v Al AZ

+ j2w %SS\ H . H* dv-%\gg. E.E*av
v" V"

The term - -;—S\S\g E-J*dv represents input power; therefore,
VH

)



lﬁ“ B.7*av=+Livr
5 E-J%dv +ZV"I 3)
v"

The first two terms on the right-hand side of equation (2) are the complex power flow into
the half-space and cavity, respectively, and the last term represents the net time-average
stored energy in volume v'.

As & approaches zero, the volume v'" approaches zero, and, hence, the net
stored energy in v'" is zero. Therefore,

%V1*=%S Exﬁ*-(-idx'dy')+%5§ﬁxﬁ*-(+2dx'dy') 4)
Ay Ag

The complex Poynting theorem will now be applied to the volume v' ‘which is infi-
nite and to the volume v which is finite (cavity). (See fig. 1.) The complex power flow
into the half-space z <0 is given by

s ExE e ay-p gt ({8 Ao - (((5. 5w (5)
A]. v! v!

and the complex power flow into the cavity z >0 is given by

%‘W ExH* - (+2 dx' dy') = P} + j20 %gy H-H av —%55553’ - E* av (6)
Aq v v

where Py, is the radiated power and Pl is the power loss in the cavity. The volume
integral terms represent the time-average net stored energies in their respective
vOlumes.

Assuming the power loss P; in the cavity is zero, equations (4), (5), and (6) can

be written as



}-W*=Pr+j2wﬁ§§ I-{.-I-{.*dv--e—SS E.E*av
2 4 4
v-' . v'
+jzw<14£§'§ ﬁ.ﬁ*dv-fzj‘g :E'.ﬁ*dv> 1)
v v

Now, let I =YYV, so that

%W*Y*=Pr+j2w<f4i§§ ﬁ-ﬁ*dv-%g ﬁ-ﬁ*dv)

\'A v
+ ]2(0 E I-i . I_-I.* dV - E E . —E.* dV (8)
4 4
v v

Taking the conjugate, equation (8) becomes

%v*mpr-jzw(ﬂggﬁ.ﬁ*d -%5§§E-E*dv>
v' v
_j2w<%§5\§ﬁ-ﬁ*d _igggﬁ.ﬁ*av) ©
v v

The admittance is now given as

Y=G+ijB
jzwﬁgggﬁ.ﬁ*d -sﬁgﬁ.ﬁ*av
4 4
_ Pr ) v' v!
1y*v 1y*y
2 2
jzwﬁjﬁﬁ.ﬁ*dv-sgggﬁ.ﬁ*dv
4 4
v v

- I (10)
1 y*
5 V'V



Therefore,

G-= Pr (11)

2w ESSSﬁ'ﬁ*dV_SSIS‘S‘E'E*dV 2w ES‘S‘ ﬁ-ﬁ*dv—sgjj\ﬁ-ﬁ*dv
4 4 4 4
v' v v

vl
B=-
1 * 1 *
3 \'A" 5 Vv
(12a)
2W{K<KW ) >>yt = <KW >y 2W(KW>>y = <<We>>y
L2 2y v) 20 2y ) (125
~vv* S vv*
2 2
-2 <KWy >> = <<W>>
B= ( rln © ) (12¢)
=vv*
2
where
S<KWm>> - <<We>> = (<<Wm>>vv - <<We>>vv> + (<<Wm>>v - <<We>>v>
For a high Q system with a resonance frequency of w,,
<§g) ~0
dw wp
(13)
B(wr) =0
- As one moves off resonance, the input admittance can be written as
Y(0) = Glwr) + i@ - wr)(ﬂﬁ> (14)
dw/y=w
r

10



At the half-power point,

: T T
1% Iz
Y(wr + %’-) = \[2_ Y(wy)e 4= \fi G(wr)e 4 (15)
Substituting equation (15) into equation (14) and equating imaginary parts gives
( - wﬂ(%) = G(wr) (16a)
w=wr
or
#e) o
w w=Wwyr
Therefore, the relative bandwidth is
2G(w
p.w. = Aw _ Z5(r) (17)
Wy w dB
T dw
Multiplying both numerator and denominator by % vv* gives
2L vv* G(w
2 r) 2P,
BN =B 1o dB e
~yv* &2 S VAT
“r 2 v dw “r 2 dw
From equation (12c¢),
@ N i —Za)(<<wm>> - <<We>>)
dw dw 1 vv*
2
so that
<@> -1 _1[-2@(<<Wm>> - <<We>>):l (19)
dw /- 1 vv* dw w=wp
2

11



1 yy+(dB - i[zw(<<wm>> - <<We>>>:] (20)
2 w=w dw

dw wW=Wr
and, thus,
2P
B.W. = < L (21a)
~Wy ™ 2w<<<Wm>> - <<We>>)
w=wy
or
2P,

B.W. = (21p)

-wp diw[zw(<<wm>>v. - <<We>>vv>:’ + d%[Zw(<<Wm>>v - <<We>>v>]

w———wr

The concept of quality factor Q is usually defined as being proportional to the sum
of the time-average magnetic and electric stored energies. However, an inconsistency in
this classical definition has been asserted by Rhodes in reference 18. This definition
includes parts of the magnetic and electric stored energies that can not be observed since
these energies are obtained by treating the volume integrals individually in the complex
Poynting theorem. This inconsistency has been removed by Rhodes by redefining Q in
terms of the time~average '"physically observable' stored magnetic and electric energies,
determined through differencing the volume integrals in the complex Poynting theorem.
This "redefined' definition of Q is

w(<<Wm>> + <<We>>)

= 2
Q P, 22
W=wp
In terms of the volumes considered in the present paper, the quality factor becomes
w(<<Wm>>vr + <KW >>y + <<We>>ur + <<We>>v)
Q= D (23)
T

w=Q)r

12



But at resonance the observable magnetic and electric energies are equal, that is,

<KW >yt + <KWy >>y = <KW @SSyt + <<Wed>y, (24)

Hence,

2w (<<Wm’e>>vv + <<Wm,e>>v>

Q= P (25)

w=wr

where the subscript m,e means that either magnetic or electric ''physically observable"
stored energy is used.

DERIVATION OF TIME-AVERAGE MAGNETIC AND ELECTRIC VOLUME
INTEGRALS IN A RECTANGULAR WAVEGUIDE SECTION

The volume integrals appearing in the complex Poynting theorem are given as

%5155 H - H* dv and GZ Sﬁg\g E - E* dv. The fields for a rectangular waveguide will now
v

v
be substituted into each of these volume integrals. Each volume integral will be carried

through in its entirety.

The total magnetic field is
H = RHy + §Hy + 2Hy (26)

where the components are given by equations (A23) in appendix A. Substituting equa-
tion (26) into the volume integral results in

gy I A A A Ary X - P
fi— SSS\ H-H"dv= % &S‘g (xHx +YHy + ZHZ> . (xHX + yH;‘, + zHZ> dv (27)
\4 \4

where the volume is bounded by the walls of the rectangular waveguide and transverse
planes Sj(where z =08) and Sp(where z =d). Therefore,

1:_ g ‘ES .8 dv - 141 ng (HXH; + HyH) + HZH;)dv (28)

13



Each term of the integrand (eq. (28)) is written out explicitly as follows:

{mi il:k‘”‘({( {— . ] } T2 {""' 15)5 1 + [ n&}nm,}e"‘zz)sinmazxcos?YJ}{Z“ZJ\tﬁ({("‘T'")(?)A;-n.
. [(n_;z)z . kg]c;n.n} e {ma'_w)'(n?'w)s;n.n. . [(%)2 . qnm}"‘z) o T ¢ o 2 y]} (29a)
o[- o ) [HJ(‘X‘")})“‘}}{ 5 2[—({E(~)]

. (L':—")("l;—")c;,.n} R {Ez . ("‘—-)Z]Bm « (2, } "‘z> mt g e ,J} (29b)

my o nm = -jkzz
+ (n— Dhinr - > Bm.". jlcos x cos 22 > (290)

The integration over the cross section is performed first. Due to orthogonality, the inte-
grations for m #m' and n #n’' are zero. In addition, the resulting integrations are
weighted differently dependingon m and n. When m =0 in equation (29a) and n =0
in equation (29b), the integrations are identically zero. When m=#0 and n=0 in
equation (292), n+#0 and m =0 in equation (29b), and m #0, n=0, n +0, and

m = 0 in equation (29c), the integrations result in a multiplying factor of 1/2. When

m #0 and n # 0, the integrations of equations (29) produce a multiplying factor of 1/4.
For m=0 and n =0, the multiplying factor resulting from the integration of equa-

tion (29b) is 1. The integrations over the cross section for equations (29) can, therefore,
be written as

R DR o ek >}}{<—><>K>]}“{<—x>

14



fLwmewr L5 sl ettt (e
e (e (e (e )
g (- o[- - ) (500

(32 Do -3 D) (B2 i - 35 e for o i B;m)eﬁ(kz-k;)z] (30¢)
0 (m,n = 0)

Ymn = (31a)
1 (m,n # 0)
2 (m,n = 0)

€m,n = (31b)
1 (m,n # 0)

? . 2o o : ej(kz-k;)z} (328.)

o ] 9] (321
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Je -i(kz*E)ZJ

_. i‘z— * 2
2 ) +2 Re (m" cmn-—Amn)(m"D;‘nn MBn

mm
{— cmn b mn b

2 e’(kzkz)z} (32¢)

Before integrating on z, the wave number Kk, will be written explicitly for propagating

waves as

2 2 ; 2 2
- K2 - _[n 2 . (m n
i = \/k =) - () <k (5 - <‘§)> (332)
and for nonpropagating waves as
2 2 2 2
= -j|[fmm\” , am\" 2 2 . (mm\” , (o7
k, = ]\/<a> +<b) k <k <<a) +<b>) (33b)

Substituting for k, and integrating on z (the integrationon 2z is over the limits
z =06 and z =d;the distance & is then allowed to approach zero), the total magnetic

volume integral becomes the following: For propagating waves,

2

ol

s (=efren [+ e

—j2dllk m n
a b
2
Hz i

(% fé‘ oo dv) ) "‘—;’éi mzo nZO “’21“2 e 2

% ma ]Amn

e
d-2Re 12 2. Amn+ mr )cm,}{ 2, T)Z an+ o7 Dm,} —_— (34)
(“z il of T

2
ﬂ’_ n1r an [—) +k’L}Dmn

dj| + 7nfm|— 3

Cmn

(Equation continued on next page)
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(Equation continued on next page)
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e -1 mn nw
1. Re[(Tcmn - 32 A (22 D3y - 32 a:m)ﬂ

(35)

The total magnetic volume integral is the sum of the volume integrals for propagating and
nonpropagating waves; that is,

%yggﬁ.ﬁ* dv = %Sygﬁ-ﬁ* dv + %gggﬁ-ﬁ*dv (36)
v v v
pro non

Attention is now turned to the volume integral of the electric field. The total elec-

tric field is given as
E = REy + jEy + 2Eg (37

where the components Eyx, Ey, and Ez are given by equations (A18). Substituting
equation (37) into the volume integral results in

€ ° — et € * * *
Z&W E-E*dv-= i &W <EXEX + EyEy + EzEy dv) (38)
v v

where
o0 o0
NN -jk ik, z
ExEy = Z Z (Amne ¥a? aneJ Z >cos Lna—”x sin I—E y
m=0 n=0
hod ol Lk *
]k Z -jk,z t '
X Z A*m,n.e 27 Brn'n'e ¥z )cos I—na—”x sin % (39a)
m'=0 n'=0

18



0 [~} _j 7 .
EYE;"_' Z Z <Cmne 2 +Dmnelkz> -

SlnTx COSMY

-3 o ok .1, %
+jk_z -jk,Z
X Z Z (Crn'n'e z + D;‘nvn'e z > m'm

sin - X cos 2Ty (39b)
m=0 n=0
[~ o] ©0
* NN 1 |{m7 nm ~lkg m7
EzEz = T \a Amn*"gcmne - |75 Bmn
m=0 n=0
ikzz
nf mq nw
—D sin — X sin —
+ b mn)e in Py in b Yy
%) 0 . k;
NN 1 |/fm'm ,x n'm ok %22 fm'7
X +?-<a Amn+bcmn)e —(a an
m'=0 n'=0 ¥z
jkyz
n'm L * - m'y n'y
e Dm'n')e sin =— x sin =—y (39¢)
As before, integration over the cross section is performed first, i.e
k2 - ik, z jkyz iKiz ikz
— — b - 7 -
S‘ 5 E-E*dxdy-= aT Z Z Yntm <Amne + Bmne )(A:nne + Bmne 2
y=0 x=0 m=0 n=0
-ik,z jkyZ ik -jks
+ Ymén (Cmne ¥z + Dmne] z )(C;nne] 2% D:nne Jkz2
Ym?n |[m7 nm > -ikzZ  [mg
+ ka; (—a-'— Amn+FCmn_e Y an

iky2 ikyz
T c:nn>el .

.
) (n;r BY . + rllon D*rznn>e_]kzz (40)
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where

0 2 (m,n = 0)

= €m,n = (41)
1 1 (m,n # 0) '

Ym,n

and orthogonality has been taken into account.

The volume integrals of the electric field for propagating and nonpropagating waves
will now be determined in a manner similar to that for the magnetic volume integrals.
These electric volume integrals become the following: For propagating waves (eq. (33a)),

= =
2
e

<ES‘S‘§E-E dv) - 2 33 | et [Ama] @ + 2 Re Amna;nnf———z——z— 4 + ¥t § [Cran| d + 2 Re{CmpDin
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LLLY ) MMp,
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For nonpropagating waves (eq. (33b)),
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Therefore, the total electric volume integral is

(g era-(c(((8.8w) ({5 5o (49)
4 4 4
v v v
ro

p non

Derivation of Time-Average '"Physically Observable' Stored Energies
of an Infinite Rectangular Waveguide

When the complex Poynting theorem is applied to radiating systems, or to any
closed volume, the volume integrals of %I_-I' - H* and EZ E.E* appear in the equation

only through their difference. However, in the literature (e.g., refs. 5, 6, and 8) these
volume integrals are usually interpreted individually. It has been shown by Rhodes in
reference 17 and Collin and Rothschild in reference 14 that by considering an infinite
volume (planar antenna) for certain aperture distributions such an interpretation leads to
infinite stored energies. Rhodes showed that by treating the difference of the volume
integrals the infinities cancelled exactly. From the remaining parts of the difference he
determined integral representations of the ''physically observable' time-average magnetic
and electric stored energies.

An analogous problem to the planar antenna would be the infinite rectangular wave-
guide which can be identified with figure 1 for the case where d is infinite, a'=a, and
¢ =b. Applying the complex Poynting theorem to the volume v shown in figure 1 pro-
duces the volume integrals given by equations (36) and (44). The surface Sg at z=d
is treated as a mathematical boundary; that is, the coefficients Bpyp and Dpp corre-
sponding to no wave traveling in the z-direction are zero. For a source (aperture) that
is located at the z = 0 plane, with perfectly conducting walls and no losses within the
waveguide, radiation occurs through z=d as d - «. Thus, setting Bpyyp and Dpmp
equal to zero in equations (35) and (43) and allowing d to approach infinity, the magnetie
and electric volume integrals become

RS @) gm Jf,,? 5 _2{:_ (=) [(g)ﬂkzlcm

2 2

d+ﬁ

#l

2 2o - (22 e
e

d + enip

ma
—C
a -mn

- BT | s (22 (2 = 5)
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Cmn

d+ 7/l‘l'lel'l

'm| - mn

o« ]
2
.. abe e -1 "m"
+c1,”:ﬁ Z Z [n€m|Amn +"‘m‘inlcmn mznlman Amn
- m=0 n=0 2 2 2 2
n a|[[maf . oo _ 2 \|fmef , ma? 2 2
a b a b
2d M)2+ an\? 2
2 a b
+ 2% Conn| & - -1 (46)

It is shown in appendix B that the contributions to the electric and magnetic volume
integrals from the propagating waves are identical. Therefore, when the volume integrals
are differenced, these contributions cancel identically. In addition, it is also shown in
appendix B that further cancellations occur in the volume integrals when the terms are
written in a certain form. Before discussing these cancellations, it is essential to offer
some physical interpretation which would justify writing the terms in a proper form for
carrying out these cancellations.

The coefficients Ay and Cpyp are determined by matching the aperture distri-
bution with the waveguide fields at z =06 as § tends to zero; thatis,

oo o0

-jk, 0
Exa(x,y,k) = 11n(1) E4(x,y,0,k) = %1m Z Z Amn cos —aﬂx sin % ye z (47a)
m=0 n=0
S iky, 6
-]
Eya(x,y,k) = hn}) Ey(x,y,0,k) = lélm Z Z Cmn sin —a- X cos % ye z (47p)
m=0 n=0

Multiply equation (47a) by cos T x sin 2L 5 " v and equation (47b) by sin T x cos 21 T Ty,

and integrate over the waveguide cross section. For planar apertures in perfectly con-
ducting metal, Exa and Eya outside the aperture are zero; hence,

S‘g Exa cos-?x sin%ydxdy-

A = ap #0 48a
mn ab/4 (m3n ) ( )
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Cmn = (m,n # 0) (48b)

SS\ Exq sin 87 y dx dy
ap b
Agn =

e (n # 0) (48c)

Eyg sin =2 x dx dy
ggap y a

ab/2

Cmo = (m # 0) (484)

These coefficients are finite for all values of frequencies since the electric-field distri-
butions in the aperture are well-defined functions of frequency. Taking this into account,
the volume integrals given by equations (45) and (46) become infinite, in general, as

ky - 0 because the contributions from the Ez, Hy, and Hy components to the volume
integrals become infinite. The contributions from the Ey, Ey, and Hz; components
are finite. When the volume integrals are differenced, these infinities must cancel in
some way since the surface integral in the complex Poynting theorem is finite for all fre-
quencies. Following Rhodes (ref. 17), one may argue that since these canceling terms
disappear from the complex Poynting theorem for all frequencies they must then have no
physical significance and may therefore be neglected in the volume integrals, even when
these integrals are considered separately. Those terms which do not so cancel are
accordingly referred to as ''physically observable.” The difference is written as

2

el (oo (29

m7 nm
T Con ~ 37 A
a mn b mn

mn nn
Lt o NN L1
a mn b mn

2
+ 2€nm€n

"~ €mén
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2. (mn\*_ (o
(2 (5

o o

2 2 2 2 4y
abe
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m=0 n=0 kz
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~ga\ifmm\”, fmm\"_,2
2 2 b
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It is shown in appendix C that the expressions associated with the two braced terms in
equation (49) vanish. Therefore, the '"physically observable' stored energies for an
infinite rectangular waveguide are

2
) 0 mm Cmn _nn Amn
ab a b
<Wm>>jnf = — Z Z €mén (50a)
1607 m=0 n=0 mmZ | /nm\? K2
— + e -
=) :
Jy2. (m) +<M>
a b
i 2 2)
Amn| * Ym¢n|Cmn
(50b)

©0 © 1y €
<<We>>inf=ill?65 Z Z nr
m=0 n=0 ﬂ2+9ﬂ2_k2
a b - \2 2
RSy
- a

Notice the similarity in this result (egs. (50)) to the result given by Rhodes for the planar
antenna (ref. 17), which is another radiating system with infinite volume. The energies
stored in a section of uniform waveguide are usually given in the literature as energy per
unit length (see ref. 19). To determine the energies stored in a specified section of length
one should then multiply by the length. However, for an infinite length such procedure
would result in infinite stored energies. The stored energies represented by the pre-
ceding equations (50) show that they remain finite even for an infinite section of waveguide.

L

Derivation of Time-Average '"Physically Observable' Stored Energies
of a Rectangular Cavity

When a perfect electric conductor is placed at z = d, the reflected amplitude coef-
ficients By and Dy are not zero. Instead, these coefficients are related to the
amplitude coefficients Ay, and Cpyn, respectively. This relationship is established
by applying the boundary condition at z =0 and 2z =d on the transverse electric fields.
At z = 0, the coefficients are determined in the same manner as given before; that is,

551 Exg cos 27 x sin 2T y dS
ap a b

ab/4

Amn +Bmn = (m,n # 0) (51a)
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ggap Eya sin % X cos % y ds

Con + D = : (m,n # 0) (51b)
mn mn ab/4 )
S‘g‘ Exg sin Pb—ﬂ y dS
Ag, + B, = — 2P (n # 0) (51c)
On On ab/2
gg Ey, sin E;l-’l x dS
Cmo + Dmo = —22 (m # 0) (51d)
mQ0 m ab/2
At z =d,
-jk,d ik,d )
Amne]Z +ane]Z =0
> (52)
~-jkyd ikyd
Cmne]Z +Dmne]z =0
J
Hence,
-j2k,d
Bmn = -Amn €
(53)
-j2k,d
Dmn = -Cmn ©

where k, is given by equations (33). By substituting equations (53) for By, and Dpp
into equations (34), (35), (42), and (43), the magnetic and electric volume integrals become
the following:
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(54)

By expressing the exponentials in their trigonometric and hyperbolic representations,

. _ fmr 2 _ [nn 2
%S‘S‘S‘ H.H"dv= a_:)éi zo i_u: wzly.z 27}:2‘" (mT"><%)Amn * [(?)2 + kg:lcmn(z d+ = kz (:;ﬂ) (I;ﬂ) + Zynem
S N

{ e e {M—m} -
A - (mn)? _ (nrf?
e e

(Equation continued on next page)

equation (54) is written as follows:

26



(55)

(56)
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(57)

When the volume integrals are differenced, cancellations in terms occur as in the infinite
However, before discussing these cancellations, it is necessary to give

waveguide case.
some physical interpretation leading to these cancellations
Substituting equations (53) for Bmp and Dmp into equations (51) results in

(58a)

fmn = 2k, d
bl
55 asm——xcos;ydxdy
Cm (58Db)

ab< JZkZd)

g Exg sin %Z-T y dx dy

Agp = ed (58¢)
%13(1 ) ky >
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Sg E asinmxdxdy
ap y a

b -j2kzad
afy - o12%)

(584d)

Cmo =

For the case of the infinite waveguide, the application of Rhodes' method of identi-
fying the '"physically observable' stored energies has been seen to involve the exclusion
of certain terms in the stored energy expressions which, when considered separately,
tend toward infinity as l/kg when k; — 0. For the finite-length waveguide (cavity)
such l/k% terms also exist, but they are not the only terms which tend to infinity as
k;, — 0. The amplitude coefficients of equations (58) also tend to infinity as ky — 0, with
the result that every term in the stored energy expressions tends separately to infinity.
In order to apply Rhodes' method to the cavity, one must distinguish between the 1/ kg
type infinities and the infinities due to the amplitude coefficients. The reason for the
infinite coefficients is that ky; = 0 (or kj; = nn/d) corresponds to the resonant frequency
of the lossless cavity. A physically realizable cavity would necessarily have some ohmic
losses so that these coefficients would not in fact become infinite. Alternatively, if the
cavity were truly lossless, the aperture fields would have to vanish as k; — n7/d. On
this basis, then, the infinities for which cancellation of terms are sought after the manner
of Rhodes will be those infinities not caused by the amplitude coefficients.

An examination of the expression for complex power at the aperture shows that it is
infinite since the amplitude coefficients A,,;, and 'Cmn become infinite as k, — 0.
(See discussion following egs. (62).) However, the infinities noted in the magnetic and
electric volume integrals are not due entirely to the infinities caused by A, and Cpp,
as discussed earlier in this section; they are also caused by the kg terms in the denom-
inators resulting from the Egz, Hy, and Hy components. It is these latter contributions
to the volume integral which must cancel identically when the volume integrals are differ-
enced. Since the infinite complex power at the aperture is caused by the coefficients
becoming infinite, the net infinite stored energy must result from these coefficients only.
Therefore, expressing the contributions which are infinite because of the 1/ k% and the
amplitude coefficients in terms of the contributions which depend on the amplitudes only
will enable one to define "'physically observable' stored energies for a shorted rectangular
waveguide.

By subtracting and adding the finite contributions in each volume integral and then
grouping the negative finite contributions with the infinite contributions, each volume inte-
gral is then written as a new infinite contribution plus twice the finite contribution. ’i‘his
is equivalent to expressing the infinite contribution as a new infinite contribution plus the
finite contribution. Thus, by following this procedure the two volume integrals are written
as
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Taking the difference in the two volume integrals (eqs. (58) and (60)) and regrouping terms
results in the following:

R R R R Lo _ﬂ [ o ]
v m= 2 2
- () - ()
sin \2— ﬂz. _“_”2_ - -
xL&;)(:)— +% ZOZ_";D_[{m} {1V} + 26| 07 Cong - —Amnz
2\lk2 - (mry" _ (nm me
P76 e

xslnth (—‘El) +(';_”> - k:l (61)

where {I}, {H}, {III}, and {IV} are defined in appendix D. The terms {I) - K2 {1}

and {III} - k2 {IV} are shown to vanish identically in appendix D. Thus, the magnetic
and electric stored energies remaining are interpreted as ''physically observable' by the
following energy equations:

<<Wp>>y

2
5| sin Zd\’ "”’ (‘:’ © w
Z Z Zemfn + Z Z 2€mén n;n
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T Amn

nn
-3 Amn -
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and

+ ymen mn

- M
b NS 2 2
Z Z 2] Yofm|Amn| + ¥€n[Cmn

m=0 n=0

(62b)

It should be noted that these '"physically observable'' stored energies become infinite as

p

ky - 0 |as well as for k; = —c_l—ﬂ where p=1,2,3,. . .| since the amplitude coefficients

become infinite (see discussion following eqs. (57)).
These '"physically observable' stored energies can also be determined from the
surface integral of the complex Poynting theorem as follows:

-1 ﬁxﬁ*.ﬁds=jzw<§j’§§ﬁ.ﬁ*dv-gﬂyﬁ.E*dv> (63)

. ; © = - d\ . mo i ok d .
%S‘S(Exﬂy-Eny>&dy=%SS[[Z_ HZ Amn(l-e kz/cos—r:—"-x smr:)—"yJ(néonfo Lu{’}2+(%l> Amn*‘(?)(nfjcmn lse Ky cos?sm';—"y

%S{(Exﬂ;, - EyH;>dx dy = %( Z Z __1_{, nemEé’ + (?’ﬂ(;‘mn[z N (?)(%)(yncmAmnC;-m + ymenA,'mcmn)
; 20 ns

) ymen[("g)z . 2] fcm[z}(l ot ada e"'z(“z"‘;)")) ' (64D)

3 60 ooy - myrfos s - {Z D L R F S RIC  (IE RIC

m=

N L “z“‘“”)} (64c)
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Dividing equation (65b) by 2w yields the same expressions derived earlier for "physi-
cally observable' stored energies. (The nonpropagating contributions are easily identi~
fied with magnetic and electric stored energies since they are always positive. However,
this is not true of the propagating contributions; identification of these energies is aided
by examining which field components contribute.)

Since the expressions given by equations (61) are to be used in determining quality
factor Q, it is necessary that each be positive (or zero) at resonance. There is no prob-
lem with the contribution from the nonpropagating waves since it is always positive. How-
ever, the contribution from the propagating waves can be negative. But what must be
considered, in general, is the case when both propagating and nonpropagating wave con-
tributions exist simultaneously; the propagating waves can be limited by the choice of
waveguide size, but the nonpropagating waves exist whenever a discontinuity is present
in the waveguide, which is the usual case. Since discontinuities produce nonpropagating
waves, the existence of propagating waves only can not occur.

For the rectangular cavity-backed slot antenna considered in this paper, losses are
inherently included due to the radiating slot. The net stored energy at resonance was
always positive when a single propagating wave together with nonpropagating waves were
assumed. This result was found to be true for many different size cavities.

AMPLITUDE COEFFICIENTS FOR A NARROW SLOT BACKED
BY A RECTANGULAR CAVITY IN WHICH A SINGLE
PROPAGATING WAVE IS ASSUMED

In this section the amplitude coefficients for a rectangular cavity which backs a
narrow slot whose electric-field distribution is sinusoidal are determined. In order to
determine the amplitude coefficients Ap, and Cpyp for a narrow slot, the boundary
condition at z = 6 (see fig. 1) must be applied. For an aperture opening of some kind
at z = §, the boundary conditions are applied to the transverse electric field. In the
aperture it is assumed that the electric-field distributions are given by Ey; and Eya.
Therefore, at z = § (actually the boundary conditions are applied at z = 0 to simplify
the derivation since later on 6 - 0 anyway),

cO e}
Exa = Z Z (Amn + an>c0s ? x sin -%I y (n #0) (66a)
m=0 n=0
o0 [>o]
Eya = Z Z (Cmn + Dmn> sin Eaﬂ X cos % y (m # 0) (66b)
m=0 n=0
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Multiplying by cos ' X sin 95'—77- y and sin - X cos -I%’I y, respectively, and integrating

over 0 to a and 0 to b, the coefficients become

S.g Exga sin an y dS
ap b

ab/2

Agn + Bon =

' Eyqa sin 27 x ds
Sap ya a

Cmo + PDmo = ab/2

E cosmxsinm-r ds
S‘ap xa a b_y

Amn + Bmn = b/2
a

S‘ Exa sin 20 x cosMy ds
ap a b

Cmn + Dmn =
ab/4

Using the boundary condition at z =d for a shorted waveguide results in

'jzkzd
Bmn = ~Amn €

-j2k,d

Dmn = -Cmn €

where

<3
N
Il

Therefore, equations (67) become

2

£ Exy sin 27 y ds
abS a b
Agn = P

Zj2kzd

1-e¢€

(propagating waves)

(nonpropagating waves)

(6'7a)

(67b)

(67¢)

(67d)

(68a)
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2 S' S' . mq
— Ey, sin—x dS
ab ap ya a

Cmo = - (68b)
1-e 2kzd

4 m .

= S‘S‘ap Exq COS —a—” X sin % y ds
Amn = S d (68c)

1-e 14%g

i‘YS\ Ey, sin 27 x cos 27 ds

c. =@ YYap va a b (684)
mn . -i2k,d
-e

At the plane lim (z = §), a narrow slot is located as shown in figure 1. A reason-
6-0"
able assumption for the electric-field distribution of such a slot is (for relatively deep

cavities, ref. 7):

. Vo . J4
Exay' k) = - sin k<§ - IY'D
(69)
Eya(y"k) =0
Using the distributions from equations (69), the amplitude coefficients become
/2 a'/2 v
-%-S\ S‘ —?—sin k(g- Iy")sinﬂy dx' dy’
_abvYy'=9/2vx=a'/2 & 2 b
On = Ti2k,d (70a)
1-e J
Cmo=0 (70b)
2/2 a'/2 v
iS‘ 5‘ —Tosinkg-ly'jcos—n-l—ﬂxsinmydx'dy'
ab Yyi=( /3 Yx'=-a'/2 2 2 a b
Amn = - (70c)
-j2k,d
1-e
Cmn=0 (70d)
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where

-
K2 _ (mm 2 _ (n7m 2 (propagating waves)
a b
k, =
2 2
[\k?) + (%) - K2 (nonpropagating waves)

Equations (70a) and (70c) can be integrated to give (see appendix E)

2/?;’1{010 (h=2,4,6,...)
Agp =
n-1 2V0k<cos %% - cos 52£>
—2/%—(-1)2 (h=1,3,5, ...
1-¢ ) K24 k2 - (A7 2
\_ b
-
n=24,6,. ..
4/éb 0 or
_ 12k m=1,3,5,...
Amn =
n-1 m 4Vok 51n<m772a'>(cos I;)—W L _ cos %)
{ 4/ab__ ()2 (12
-j2k,d 5
1-e a' m7 kz - M
a b
m=2,4,6,.
or
n=1,3,5,.

(71a)

(71b)
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Assume that only the m =0 and n =1 mode propagates, all others being evanescent
(i.e., E <k« —> so that

2Vok<cos %é— - cos %19
Agy = 2/ab . (722)
2 2 il
2 k¢ - [—
naj-(2) (5)
l1-e - i
f 2/ab 0 =246 .. )
~2d (%) 2
1-e
Agp = (72b)
o %l 2V0k<cos % L cos k?ﬂ)
= (-1) (n=3,517,..)
2 nw
n 2 k —
“2d <-1) k <b>
l-e J
( N
n=2,4 6,
4/ab 0 or
o |mr P, (ar_ 2 SRR
a b
1-e
Apn = (72c)
n-1  m 4Vok sm( za'><c s I;T L. cos ZIZ)
-2 -
1-e
m=2, 4,6
or
n=1,3,5,...
\ )

38



RS =

or
74l k¢
2V kfcos L = - cos ==
[ 0 < b 2 2>
Agy = 5 (73a)
2_(x
e L6
2 2
jab e sin d\k )
b
n=3,517... (73b)
2
Amn =
2 2
-d (m) +<M> 2
2 b 2 2
ab e sinh d (EE) <%> k2
m7 a nm £ _ kf
n_;l_ r;14V ks1n<a 2><COSF:‘Z- cos 2> m=2,4,86,. ..
x € (-1) % (-1) or (73c)
av<m>[k2 - (Mﬂ n=1,3,5...
a b
Coyn=0 (73d)

Substituting the coefficients of equations ('73) into the ''physically observable' stored
energy expressions given by energy equations (62) gives for <<W,>>, and <<Wg>>y
the following:
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<<Wm>>V =

40

2
_2b__ ((2)2(2
16w2u. b

BVOk cos X L cos ke
b2 2

~ —

sin 2d|[x2 - T\
b

a2b2 sin? d\k? - <_

b

(74)



and

<<KWe>>y = aT%e. (2)2
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Now, making use of the identities
sin 2x = 2 cos x sin x

and

sinh 2x = 2 cosh X sinh x

gives finally

~

2 2
2 9 T\ [cos 2L - cos KL w
2|vo[x* |\ b2 2 o /m2
<<Wp>>y = ' 573 -cot d\k“ - (B) + E
2
b
\
nw n7w £ ke 2 2
-g- COS - COS ? . oo sin ME:
X cothd<ﬂ> k2| +2 Z Z 2
m7 a'
s 172 m=2,4 n=1,3\ 2" 5
nm\® _ 2
v
9 7
<%7I> <os Eb;ize- - cos %@)
2 2
X coth d||[=T) + (BT -k2 > (76)
9 9 2 a b
2 (e -]
a b b
J
and

(17
(Equation continued on next page)
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9 =
COSEQ COSE
b 2 2 2 2
x coth al|(mT) 4 M) -2 77)
2 2 2 2 2 b
ma\® , (am\" _ 2| (am" g2
a b b
vy

In conclusion, equations (76) and (77) represent '"physically observable' magnetic
and electric stored energies for a section of rectangular waveguide which is shorted at

depth d and bounded by a slot at lim (z = 8) in which the electric-field distribution
60
is assumed to be

'
Exa = - sin k(% - |y'|>

(78)
Eya = 0

where ( is the length of the slot and a' is its width. The transverse dimensions of the
rectangular waveguide are chosen such that only one field propagates {m =0 and n = 1);
all other fields are evanescent.

RESULTS FOR THE RECTANGULAR CAVITY-BACKED SLOT ANTENNA
IN WHICH A SINGLE PROPAGATING WAVE IS ASSUMED

General

When m =0 and n=1 are assumed for the propagating wave with all others
taken as nonpropagating waves, the differences in the stored energies in the exterior
region (for a slot, ref. 17) and in the interior region (egs. (76) and (77)) are given, respec-
tively, as
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2
8|v
___l__‘z)l_.% Si(ke) + [Si(k!l) - -% Si(Zkﬂﬂ cos k¢

2‘0(<<Wm>>v' - «We»v’) =
(27m) Zo

1 e3/ 212
+ |Cin(ke) - 5 Cin(2k¢) - In 3 sin k¢ (79)

a'

and

2 |VO‘21<2
© ab

2w(<<wm>>v - <<We>>v> =2

oo o0
+2 Z E 2? 5 €
m=2,4 n=1,3 | & wip
2a
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i 4|vo [P

2 ' 3/2
abw?pu [kz ) <£>2]
b
.

2cu(<<wm>>v - <<we>>v) =

2 2
x coth d\’<m> + <M> - k2 (80Db)
a b

( 2
7d k¢
9 COS —= - COS —=
4|vo| < 20 2) 2 (12, N
2w(<<wm>> - <<We>>> = cot dik” - + Z
abZ, 3/2
2 n=3,5
e
)
_
2
cos BTL _ cos KL w o
2b 2 2 9
X coth d (EE> - k% +2 (81)
p m=2,4 n=1,3

(Equation continued on next page)
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2
8|v
- _]i T {Si(ke) + [Si(kﬁ) - % Si(zkeﬂ cos ki

(ZW)ZZO 4

3/22
2a'

+ |cin(ke) - %Cin(Zkﬂ) - 10 & sin ke (81)

The total stored electric energy at resonance is needed for computing Q; i.e., the sum of
electric stored energies from the half-space and the cavity regions. The half-space
electric stored energy is given by Rhodes in reference 17 for a slot, and the cavity electric
stored energy is given by equation (77). Therefore,

2
zw(«we») = (_l—)i—
2m) 2,

T(si(k) - 525 Cin(kg) + (k£ - sin kf)In E-? + I:Si(kﬂ) - -;- Si(ZkQEI

- 52.2. Cin(k?) - Cin(2k£):| -kl In Z}COS ke + {[Cin(kﬁ) - % Cin(ZkE)]

2
2 9 |[cos 7L _ cos KL
- . 4wIV0| ke 2b 2
+ 221Si(ke) - Si(2k¢)| + In £ Vsin k| +
2 e ab 2 5/2
K2 - (I
b
2
2 2
X |-cot d|lk? - (g) + coth d (%) - k2 (82)

(Equation continued on next page)
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2
nrf k¢
oo 0o sin m1;a' (COS E - COS ?>
+ 2 Z Z -
mma
m=2,4 n=1,3 oa

2 2
« coth d (m.> N (ﬂz) _ 2
a b

ERCEGRY

(82)

For relative bandwidth the angular frequency derivative of equation (81) is needed, that is,

2 o cos AL o5 KL
d 4ol 'k | D 2b 2 ke
w s 2w(<<W >> - <<We>> )| = ———— 372 kg sin —
w 2
(2m) abZo |n=3,5 |11\ 2
b
2 [ce] [> o]
+<cos£12—%g-cos52£> 3k +1 + 2
PR m=2,4 n=1,3
b
sin rr;na' cos nz—zg cos k?l
X a kf sin k4
mra’ mm 2 nmw 2 2 2
=)
\
2 2
+ <cos nml cos -1;—4) 2k + L +1
Mz_kz m2+ Mz-kz
b a b

(83)

(Equation continued on next page)
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2
8|V0| T . 1 .
- ——— S k¢ -[Si(ke) - = Si(2k¥)|sin k&
2_ 4 2
(27) Z,

3/2

2a’

+{ |Cin(ke) - 51- Cin(2k)| - In & cos kf + S—il%ﬂﬂé (83)

The radiated power is given by (see ref. 17)

2
P ::Ehﬁﬂ__l_ﬂ
r 2 Zg 2

% Cin(kt) + | Cin(ke) - % Cin(2k0)| cos k¢ - | Si(ke) - % Si(2k0)| sin k¢
27 _

(84)

The quality factor, relative bandwidth, and the input admittance given by equations (25),
(21a), and (10), respectively, are repeated here for completeness

2w<<We>>
N\
r

W=wp
2P
B.W. = L
420
Wy — QWKW >> - <<We>>
T dw m € )
w:—wr
and
Y=G+jB
" where
P
G L (85a)

] %IVOIZ sin? ki
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~2w(<<W...>> - <<W >>
B = ( e € ) (85D)

%\VO\Z sin2 k¢

Approximate Solutions for Moderate Cavity Depths and Narrow Slots

Since the summation on m in equations (81) and (83) is slowly convergent for
a' << a, the numerical evaluation of the double summation in these equations is cumber-
some. Adding further to the complications of evaluating these equations is the presence
of the hyperbolic terms. The evaluation of equations (81) and (83) is greatly facilitated.
by making the following approximations:

2
coth d\(%) k2 ~1 n=3,517...) (86a)
5 5 m=2,4,86,...
coth d (an> + <9bﬂ) k2 ~1 or (86b)
n=1,3,5 ...

These approximations (eqs. (86)) place additional restrictions on the cavity size. From
tables given in reference 20, the hyperbolic cotangent becomes very large for small argu-
ment and approaches unity as the argument increases (around 3 or 4). Therefore, the
approximation becomes less valid for decreasing argument. Physically, this means the
deeper the cavity the more valid the approximation (coth =1). This is also true for the
assumed aperture distribution; that is, the sinusoidal distribution assumed in the slot is
valid so long as the back wall of the cavity is not too close.

By indicating a criterion that the hyperbolic cotangent functions must satisfy, the
depth of the cavity is restricted, e.g., the arguments of equations (86) may be chosen sg
that

2
d(%) k2 >4 m=3,517... (87a)
mﬂ.z nTrz 2 m=2,4,6,..-
d (T) 4 <F> “Kk2>4 or - (87b)
n=1,35, ...
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or

(88a)

m=2,4,6,. ..
d> or (88b)

2 2 n=1,3,5,...
&) -6y -
a b

where in equation (88a) only n =3 is necessary since for all other values of n the
depth d is also greater. However, in equation (88b) the size of height a and width b
will enter into determining which m and n must be used for d to be greater for all

m and n. In addition to this restriction, the restriction resulting from the assumption
of a single propagating wave must be satisfied; that is,

\
2
(9
b

kb > 7 > (89)

or

> o
\Y2
DN | =t

J

Even with the approximations (87) to (89) (coth = 1), the summation on m is still slowly
converging for a' << a; hence, more approximations are needed to make the summation
converge faster. (The details of the a' << a approximation are given in appendix F.)
Finally, substituting the approximations into equations (81) to (83), yields the following
solutions for moderate cavity depths and narrow slots:
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2
9 [[cos TRL _ o5 K2
4|v0\ 2b 2

2
2w(<<W >> - <<W >>> = cot kdif1 - (X

A

T ) e . 1 ..
51 Si(ke) + [Sl(kﬁ) oy Sl(2k£):l cos k¢
(2n) z,

3/2
+ {Cin(kﬂ) - % Cin(2k() - In %ﬂ} sin k¢ (90)

CO0S —— - COS —
2kb 0%

6T

(Equation continued on next page)

2 2
mk{ k{ ki k¢
COS —— - COS
_ 4|V0!2 < 2kb 2 ) [ )

]l
2w(<<We>>) = -cot kd\|l - (L> _ka
7., (ka) (kb) [ 2}5/2 |_ m
1- (.

kb
kb

(91)
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2
o]
+ J-O— T (k) - C1n(k£) + (K - sin k¢) 1n E&L
2 8 ka'
2m Zg

+ {[Si(kﬁ) - % Si(Zkﬂﬂ - % [Cin(kﬂ) - cm(zmz{] - k¢ In 2 Ycos ki

+ { Cin(k¢) - % Cin(2k¢) + Si(ke) Sl(ZkQ:) +1In —}sm k¢ (91)

2
4|V |z (cos;’—::—é- cos %)
2
w3 2w<<<Wm>> - <<W> >jl ~ 1ol 11 kd cos2 kd|1 - (L
dw (ka) (kb) Z P Kb
1- (1
[ &) }
r
+ cot kd|[t - (L) Jke sin &L
k < 973/2
1-({L
kb
(-
~
2[cos TEL csMz s kL 5—@2
2 2 2

(92)

]
+
TN

e T

(Equation continued on next page)
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© <cos ——r;ﬂ:)ﬂ - cos %—)
ka A v
9 2
amy _q
kb
5 (c s ———Z’lr{kﬂﬂ - cos -1;—£>
t
-1 g sin K2
2 2 9
nmy _q
kb
2 2
nrkd oo k£ os DTKL _ o ke
2kb 2 2Kkb 2

+ (92)

(Equation continued on next page)
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8|V0l T . 1 .. .

~ 4 T ke -|Si(ke) - = Si(2kL)|sin k¢
2 2
2m) Zo
3/2 .
+ |cing) - L cin@ko) - m|&KL ‘,cos g + SILKEN (g9,
2 2’| Kl

Input Admittance Calculations

The input admittance of the rectangular cavity-backed slot is represented by
Y = G + jB where the power loss in the cavity is assumed negligible. Explicitly, the
conductance and the susceptance are given as

G =~ 8 z
2

(277)2Z0 % sin?

Do

Cin(ke) + [Cin(kﬂ) - % Cin(ZkIZ):‘cos )

NIW
=

- [Si(kﬁ) - % Si(zu)j]sin ) (93)

and
r 2 2
(cos %TB_Q - cos %) cot kd|[1 - (%)
~ 1 4 kb ka
Pazo” (ka) (kb) 3/2 T
a'-0 1 .2 kf|(ka
3 Zo sin 5 (T 2
kb
2 2
(cos g—llzé - cos l{z-g) o (cos —r;ll;ﬂ - cos %)
(T2l ng -3k (94)
2 ka T 9
1- (T n=3,5 o7\ _
kb kb

(Equation continued on next page)
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-8 _T/sike) + [Si(kﬂ) - % Si(ZkQ)] cos kit

(2m)

e3/4kg
2ka’

+ |Cin(kg) - -% Cin(2k) - 1n

sin k¢ (94)

respectively, where equation (84) has been substituted into equation (85a).

The input admittance can be represented as a function of any of the cavity or slot
dimensions in wavelengths, as well as a function of frequency. For instance, a family of
curves (G and B versus £/)A) can be generated for fixed cavity size and varying slot
widths in wavelengths. The representation of these curves is similar to the input imped-
ance curves of the planar dipole antenna considered by Rhodes in reference 21 and of the
monopole antenna considered by Jordan and Balmain in reference 5. Such curves would
enable the user to design rectangular cavity-backed slot antennas. Once the operating
frequency (resonant frequency, B = 0) is chosen, the physical slot length and width and
the physical dimensions of the cavity can be determined from these curves. However, in
order to compare such curves with measurements, either the frequency must be held con-
stant and the physical length of slot allowed to vary while the remaining dimensions are
held fixed or all dimensions except the slot length must vary in such a manner that the
elecfrical lengths remain constant as the frequency is changed. Obviously, the first
method of performing the measurements would be more desirable.

Before presenting any design admittance curves, the input admittance represented
by equations (93) and (94) is compared with experimental results (Long, ref. 22). In ref-
erence 22, measured input impedance data for a slot (1 by 25 cm) backed by a rectangular
cavity cross section (10 by 35 cm) with variable cavity depths over a frequency range of
approximately 500 to 750 MHz are presented. Actually, only half the impedance was mea-
sured since an imaging plane was used to bisect the slot lengthwise; the measured imped-
ance must then be doubled.

Admittance as a function of frequency using the representation given by equa-
tions (93) and (94) for the same cavities and slot size with cavity depths of 13.395, 17.86,
22.325, and 35.72 cm is presented in figure 3, and measured data are presented for com-
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parison. ‘'The measured susceptance is in good agreement with calculations, particularly
around resonance. The slope of the susceptance (which is related to bandwidth) at reso-
nance becomes steeper as the depth of the cavity increases; the bandwidth becomes nar-
rower. Also, the resonance frequency decreases as the depth of the cavity increases.
The measured conductance is always greater than the calculated conductance; this may be
caused by the losses in the cavity and ground plane, which have been neglected in the

calculations.
[, -—~—G
g } Calculated — B }Ca_lcula,ted
® O O 0o o o G
" ° g } Measured « xx B } Measured
[%7]
Q
=
0 5]
! =]
£ =
E g
= o
E o
g 8
Q b=
g 5
& 3
o
<
-2 (a) 4 = 13.395 cm.
] I | I |
-3 Y S T TR NN S S A A S S S R 500 550 600 650
550 600 650 700 Frequency, MHz
Frequency, MHz
x
T
-———G L
TT7 %) cateutated i 5 } calcutated
o 0 g G
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4= e B} 4— :::g}Measured
34— . 3
[=]
=1
E
" 21— = 2
] =
E §
= 1F g1
E 2
o g
g o 2o
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2 -1 -1
-2 (e¢) 4a = 22.325 om. R x (4) a = 35.72 cm.
-3 R J L)) J_L F I N1 J -3 x
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Frequency, MHz Frequency, MHz
Figure 3.- Input admittance as a function of frequency for a' =1 ocm, £ = 25 cm,

a=10 cm, and b = 35 cm with varying cavity depths.
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Since the representation of the input admittance has been shown to agree reasonably
well with measured data, theoretical curves, based on this representation, were evaluated
numerically and plotted as a function of slot length in wavelengths. In figure 4 the input
admittance as a function of electrical slot length for three electrical slot widths (0.1, 0.01,
and 0.001) are shown for increasing electrical cavity depths, respectively; the electrical
cross section of cavity for these figures is rectangular (0.3 by 0.6). Similar curves for a
square cavity cross section (0.6 by 0.6 wavelengths) are given in figure 5. Obviously,
numerous sets of admittance curves for many different choices of slots and cavities could
be computed. However, the calculated curves presented in figures 4 and 5 represent
typical sets of curves that can be generated by equations (93) and (94). Such curves do
offer invaluable design information; that is, once the operating frequency (resonant fre- |
quency, B =0) is selected, the slot length and width and the cavity dimensions can be
determined. Admittance curves as a function of frequency can also be generated for
known physical dimensions, as was shown in figure 3.

-TTG
—_ B

at/>=107"

Admittance, millimhos

Admittance, millimhos

) DR U W N ST S SR SN S S SO S
.3 4

Figure 4.- Input admittance as a function of g/A
for a/A = 0.3 and b/A = 0.6.
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Admittance, millimhos

Figure 5.- Concluded.

An examination of equation (94), which represents the susceptance as seen at the
input terminals of the slot, shows that the contribution from the propagating wave (first

term in eq. (94)) to this susceptance is zero whenever kd\l - (kiTS) nr

= 5 for odd values

2
of n; the contribution of this term is infinite whenever kdil - (é—’g) =n7 for all values

2
of n. Its contribution to the total susceptance for other values of kd\|1 - (—é%) is finite

and may be either inductive or capacitive; its contribution is inductive whenever

2
nr < kdi[l - <I<7T_b) <@2n+1) g for n=0,1,2,. .. andis capacitive whenever

2
(2n - 1) g < kdi\]1 - (l%b) <nm for n=1,2,3,. ... The contribution that the second

term in equation (94) makes to the total susceptance is capacitive (this is the case for
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n=1 and m # 0 in the original double summation given by eq. (F1)). The contribution
from the third term in equation (94) is inductive (this is the case for n >1 in the sum-
mations given by eq. (F1)), and the contribution from the external region, given by the
last term, is either inductive or capacitive.

As was noted earlier, the calculated conductance of the input admittance will prob-
ably be slightly lower than its actual value since the analysis does not include cavity and
ground plane losses. The calculated conductance, which is given by equation (93), is one-
half the conductance of the slot when it is located in an infinite perfectly conducting ground
plane and is free to radiate on both sides.

Quality Factor and Relative Bandwidth Calculations

Before the quality factor Q and relative bandwidth B.W. can be computed, the
resonant frequency (or slot length) must be determined for a given set of cavity and slot
dimensions (or slot width and cavity dimensions in wavelengths). The resonant slot length
rather than the resonant frequency will be determined because it is more convenient to
work with electrical lengths and because it gives a more general description of the slot
length. This resonant slot length £5/\ is found numerically by setting equation (90) to
zero for a given set of electrical slot width a'/x and cavity size a/x, b/A, and d/x.
The computer subroutine for determining the resonant lengths was verified graphically
for the cross-over (B = 0) frequencies 620 MHz, 593 MHz, 574 MHz, and 530 MHz shown
in figures 3(a), 3(b), 3(c), and 3(d), respectively.

Once {o/1 is determined, its value along with the corresponding values of a'/X,
a/x, b/x,and d/\x are used in the following equations to determine Q and B.W.:

2w(<<we>>)
Q= P—r (95)
w=w,
2Pr
B.W. = (96)
-Wp —-d— 2w(<<Wm>> - <<We>>>
dw -

W=wp
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(Equation continued on next page)
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(Equation continued on next page)
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nr 2 _ 2m) Z,
kb/.

- % Si(2k£)j! sin k¢ + |Cin(ke) - % Cin(2kY)

3/2 .
-1n e ki cos k¢ + Sink{ . (98)
2ka' k¢
and
2
8|Vo| 171 1 1
P, = — T 2/cin(k0) + |Cin(k?) -~ = Cin(2k%)|cos k£ - [Si(ke) - = Si(2k¢)|sin k¢
(277)2 2522 2 2

(99)

The quality factor Q and the reciprocal of the relative bandwidth 1/B.W. using
equations (103) and (104) were computed as a function of a'/A for a number of different
size cavities. A typical set of such curves is shown in figure 6 in graphical form.

From the curves shown in figure 6, it can be seen that both curves vary linearly
with the log of a'/a; furthermore, their slopes are approximately the same. These char-
acteristics were found to be true for the cavity sizes considered in this paper. Therefore,

Q zh10g3‘7'+C1
(100)
-__\N_ :hlog%‘+cz
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function of
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a/A = 0.3 and b/A = 0.6.
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where h is the slope (which appears to be independent of cavity dimensions, h = -6)
and C4 and Cgo are constants which depend on the cavity and slot size. These con-
stants, which are the intercepts of Q and 1/B.W. axis, are quite large. However, for
the cases considered in this research, the difference in 1/B.W. and Q is finite; that
is,

L _qrcy-cy=c (101)

B.W.

where C is a finite constant which depends on the cavity and slot dimensions. There-
fore,

g%er+c (102)

The magnitude of 1/B.W. and Q determines the importance of the constant C; that
is, if C is of the same order of magnitude as Q, then the reciprocal of relative band-
width 1/B.W. is related to Q by equation (102). However, as Q becomes large, its
relative magnitude compared with that of C is many orders of magnitude greater (C
compared with Q 1is very small). Hence,

. 1 :
s mw o)

which is the asymptotic relationship usually assumed in the literature. It is concluded
that according to the application of Rhodes' method of identifying "'physically observable"
stored energies the reciprocal relationship, usually associated with nonradiating systems,
is equally valid for the rectangular cavity-backed slot antenna.

Since Q@ and 1/B.W. were found to approximately satisfy equation (100) for the
many cavity dimensions investigated, results are given in tabular form. Table I shows
the computed resonant slot lengths for given electrical slot widths and cavity dimensions.
The intercepts C; and Cg which are obtained from equation (100) are also given.
From this table, therefore, the Q and the 1/B.W. (and hence, relative bandwidth) can
"be computed with very little effort.
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TABLE I.- COMPUTED RESONANT SLOT LENGTHS FOR GIVEN

ELECTRICAL SLOT WIDTHS AND DIFFERENT

CAVITY DIMENSIONS

[Q= -6 10g%—+01;

1
B.W.

~ a'
~ -6 log 3t Cz]

Lo/n for a'/x of —

a/n | ¢ o
1 2 102 | 103 | 104 | 105 | 1076 | 10-7 | 10-8
a/x=0.3; b/A=0.6
03 | -45 | -1.5 | 0.500 | 0.500 | 0.500 | 0.500 [ 0.500 | 0.500 | 0.500
4 | -3.2 0 .489 493 .495 .495 .495 .497 497
5 | -1.1 | 2.0 479 487 .496 .492 .493 494 .495
6 1.0 5.0 469 .480 .485 488 .490 .491 .493
a/x =0.4; b/x=0.6
0.3 | -3.5 | -1.0 | 0.493 | 0.495 | 0.496 | 0.497 | 0.498 | 0.498 | 0.498
4 | -2 -3 .484 .490 493 494 .495 .495 .495
5 | -1.5 1.0 478 .486 .489 .491 .493 .494 .494
.6 5 3.5 .4170 .481 .486 .488 .490 .491 .493
a/\ = 0.5; b/x = 0.6
03 | -2.7 | -0.7 | 0.489 | 0.493 | 0.494 | 0.495 | 0.495 | 0.497 | 0.497
4 | -2.0 5 .482 .488 .491 .493 .494 494 .495
5 | -1.0 1.5 A4TT .485 .489 .490 .492 .493 494
.6 5 | 3.0 471 .481 486 .488 .490 492 .493
a/x =0.6; b/x=0.6
0.3 | -2.7 | -0.5 | 0.487 | 0.492 | 0.494 | 0.496 | 0.497 | 0.497 | 0.498
4 | -2.0 3 .480 .481 .490 .492 .494 .494 .495
5 | -1.5 .8 .475 .484 488 .491 492 .493 .494
.6 -4 | 25 471 481 486 .488 491 492 .493
a/x =0.3; b/x=0.7
03 | -2.5 | -0.3 | 0.497 | 0.498 | 0.498 | 0.498 | 0.499 | 0.504 | 0.499
4 | -15 1.2 .483 .488 .492 .493 .494 .495 .495
5 .2 4.5 467 478 .484 .487 .489 .491 492
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TABLE I.- COMPUTED RESONANT SLOT LENGTHS FOR GIVEN
ELECTRICAL SLOT WIDTHS AND DIFFERENT
CAVITY DIMENSIONS -~ Concluded

_[Q=-6logg'k—+C1;, -B—;-V-:z-6log—a{+cz]

y Lo/2 for a'/x of -
d/x c C
1 2 10-2 10-3 10-4 10-5 10-6 10-7 10-8
a/x=0.3; b/xA=0.8
0.3 -2.0 | -0.4 | 0.496 | 0.497 | 0.498 | 0.498 | 0.498 | 0.498 | 0.498
.4 -5 2.0 419 .486 .489 .491 .493 .493 .495
5 1.5 8.0 .457 .471 .478 .482 .485 487 .489
a/x=0.4; b/x=0."7
0.3 -2.0 0.0 | 0.491 | 0.494 | 0.495 | 0.496 | 0.497 | 0.497 | 0.497
4 -1.0 1.2 .480 .487 .491 .492 .493 .494 .495
.5 .0 3.3 .469 .480 ,485 .488 .490 .491 .492
a/x=0.4; b/x=0.8
0.3 -1.5 | -0.5 | 0.4%0 | 0.493 | 0.494 | 0.496 | 0.496 | 0.497 | 0.497
4 -1.0 1.2 .478 .489 .489 .491 .492 .493 .494
.5 1.0 5.5 .461 .474 .481 .485 .487 .489 .490
CONCLUSIONS

It is concluded that the time-average "physically observable' stored energies in an
infinite rectangular waveguide and in a rectangular cavity can be expressed in a form
which requires only the transverse electric and longitudinal magnetic field components.
This same conclusion had been reached earlier for the planar aperfure antenna. For the
infinite waveguide case, the propagating fields do not contribute to these stored energies
whereas the nonpropagating fields do. However, both propagating and nonpropagating
fields were found to contribute to the stored energies for the rectangular cavity case.

The representations of these energies were found to be analogous to the representations
given for the planar aperture antenna; although, in the cavity case the representations are
modified by the presence of the propagating field contributions and functions which depend
on the cavity depths. It is concluded that the method of Rhodes can be adapted to the
infinite waveguide and finite waveguide (cavity), etc.
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Input susceptance calculations were found to agree with measurements, particularly
around resonance. The slope of the susceptance at resonance became steeper as the
depth of the cavity increased; the bandwidth became narrower. Also, the resonant fre-
quency decreased as the depth of the cavity increased. The calculated input conductance
was always less than the measured input conductance. This difference was attributed
to neglecting the losses in the walls of the cavity and ground plane in the analysis.

The asymptotic relationship which is usually assumed to exist between the quality
factor Q and the reciprocal of relative bandwidth for nonradiating systems was found
to be equally applicable for the rectangular cavity-backed slot antenna. For lower values
of Q, the reciprocal of relative bandwidth and Q are approximately related by constants
which depend on the slot and cavity dimensions.

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., March 31, 1975,
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APPENDIX A
DERIVATION OF FIELDS INSIDE A RECTANGULAR WAVEGUIDE SECTION

From Maxwell's equations, assuming an elwt time convention, a wave equation is
obtained in terms of the electric field ﬁ,

Vzl-*f + kZE =0 (A1)

where k = w\ljue. Expressing E inits rectangular components, equation (A1) for the
Ex and Ey components becomes

82 82 82 2

—_Z EX(X’Y;Z,k) + _é' Ex(x,y,Z,k) + "_2 EX(X,Y7zyk) +k Ex(X,y,Z,k) =0 (Aza)
ox oy " 0z

82 82 92 2

_2' Ey(X,y,Z ,k) + _2' EY(X,Y;Zsk) + '_2 EY(X,Y,Z’k) +k Ey(X’Y9z7,k) =0 (A2b)
9x dy 0Z

By separation of variables, a solution to equations (A2) can be written as

~jkyz jk
Ex(x,y,z,k) = (A cos kxx + B sin kxx)(C cos kyy + D sin kyy)(Fe kg + Ge’ ZZ) (A3a)

' ' ai 1 : ' qj ' -ijZ ' ]kZZ
Ey(x,y,2,k) = (A" cos kxx + B’ sin kyx)(C' cos kyy + D' sin kyy) F'e + G'e (A3Db)

where k,?; + 132, + kg = k% and A, B, etc.,and A', B', etc., are arbitrary constants,

The coefficients will now be determined for a rectangular waveguide (see fig. 1).
The boundary conditions on Ey at x=0,a are

that is, for all y and z within the cavity,

-jkgz ik,
A'(C' cos kyy + D' sin kyy)<F'e 1z + G'e] ZZ) =0 (A5a)
-jk,2 ik,Z
(A" cos kya + B' sin kxa)(C' cos kyy + D' sin kyy)<F'e Iz + G'e]kZ ) =0 (A5Db)
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APPENDIX A — Continued

Equation (A5a) implies that A' = 0. Hence from equation (A5b) for B' # 0, it follows
that sin kxa = 0, or that

kxa = mmw m=0,1,2,...) (A6)

Therefore, equation (A3b) becomes

-jkgz ks Z

Ey = B' sin —Ttﬂ x(C' cos kyy + D' sin kyy)(F'e Wz + G'esz ) (AT

Applying the boundary condition Ex =0 at y =0,b yields
-jkgz jkyz

Ex = (A cos kgx + B sin kgx)D sin %71 y(Fe ez + Ge] z ) (A8)
where ky was found to have the value nn/b for n=0,1,2,. ... Rewriting equa-
umummmm&mmgf%ﬂmdw=%

m7 . m7 _\_. nf -jkzz ikzz
EX=DAcosTx+Bsm—a—xs1n—b—yFe + Ge (A9a)
s IO nmw . nf ,.~Jkgz ikzz
Ey =B sm-a—xC'cosFy+D's1nT)-y Fte + G'e (A9D)

At this point Maxwell's divergence equation V - D =0 is used to determine the remain-~
ing electric field component Egz

vV.D=0 (A10)

oE oE oE
XY+ 2-0 (Al11)
ax dy 9z

8E, 9By 9Ey

oz ox dy
~jkpz ik, 2z
=-D -?(—A sin I—ET- X + B cos —12—17 x>sin % y(Fe Wz + Ge]kZ )

: -jk ik
- B’ % sin ? x(—C' sin % y + D' cos % y)(F'e ez | G'e) ZZ) (A12)
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APPENDIX A — Continued

Integrating on 2z, equation (A12) becomes

-ikgz ikyz
EZ=-D%(—Asin?x+Bcos%x)sinMy L e Pz +—(-}-—e] z

b | -jky iky
r - ik,z
- B M gin BT x(-C' sin 2T D' cos 27 F ekzz G Rz Al3
Bbsmax< sin 30y + byjkz +jkze (A13)

The constant of integration has been set equal to zero since it would not represent a
traveling wave in the z direction. Applying the boundary conditions that E, =0 for
x=0,2a and y =0,b,

-jkg2 ikyz
DRI pgg iy F e G JR2E) 4 x=0) . (A14)
a b \-ikg jkg
which implies B =0 and
0 - B'D' 27 sin 27 x —F'— e_ijZ + E ejkzz =0 (y = 0) (A15)

which implies D' = 0. The boundary conditions at x=a and y =b give redundant
information. Substituting these conditions into the equation for the electric field compo-

nents yields

Ex = DA cos m;;( sin % y(Fe-jkzz + Gejkzz> (A16a)
Ey = B'C' sin Elb-ﬂ—x— cos % y(F'e—jkzz + G'ejkzz> (A16Db)
Ez = DA M7 gin 27 % sin 22 y i e-jkzz + E— ejkZZ
a a b iky ik,
mr P iz | G jkez (Al6c)

B'C' A7 gin 227 x gin &7 -
* b a b Y| kg Tkg
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APPENDIX A — Continued

Simplifying equations (A16) with the substitutions DAF = Amp, DAG = Bmn,
B'C'F' = Cmp, and B'C'G' = Dy and recognizing the dependence of Ex, Ey, and Eg
upon m and n these quantities (eqs. (A16)) may be written as

-jkgz ikgz . .
(Ex)mn = <Amn e 2 4 Bmnpe )cos % X sin % y (A17a)

-ikzz ikzz) . mq nm 17
(Ey) yyp = {Cmn € +Dmn € sin Z=x cos =y (A17b)

1 {(m7 nw -ikzz  [mr 7w iKzZ| . mm_ . n7m

-jky |\ @ a b
(Al17c)
Thus the most general solution of equation (A3) will be given by
&
Ex = E Z (Ex)mn (A18a)
m=0 n=0
= 18
Ey >: Z (Ey)mn (A18b)
m=0 n=0
o0 [~e)
Ey = Z z (Ez)mn (A18c)
m=0 n=0 :
From Maxwell's curl equation
v xE=-jouH (A19)

the magnetic field can be determined. Hence, the magnetic field components are deter-
mined as follows:
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APPENDIX A — Continued

[a (EZ)mn 3(Ey)mn

(Hx)yp

]wu‘- dy oz
1_/nn/b|{mn .U -ikzz  [m7 nm jkzz
. . Appn+=—°C -[— B +—D e
jou \-ikg ( " m“>e (a ™ ““9
-jkyz ik,z
x sin BT x cos 27 y -ikzCmn € 1z + jkzDmn eJ 2%) sin 22T x cos 2T y
a b a b
2 3
1 (1 mn\/n7 nr\® . 2 jkzz mﬂ)(mr)
e —\==lA + =1 + C e -{|{==]—B
nm 2 2 1Kz, T
15 + Kz(Dmn e sin X COS —Y
J
r 9 ] .
1 m7 nw -J8z2 my\/nw
= A — k.
T~ (a)<b> mn + ( > + Kz |Cmn (a)(b) mn
L J
ar\2 2 ikzz mn nmT
+||=} +k;Dmnye sin — X cos -—y (A20)
b a b
(Ho) . = l-a(EX)mn 3(Ez)pp
Y/ mn ]wp.,_ 9z ox
1 ( . -jkgz jkzz> mar 1
= - ——(|-jk, A e + jkzB e cos BT x sin 27T IT A
o 1&zAmn 1%zBmn a3 b y - sz mn

(A21)
(Equation continued on next page)
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APPENDIX A — Continued

nw -ikzz  [m7 nm iKzz | mqy m7 . ... D7
—C e -{—B —ID e —— Cc0S — X sin —
b m19 (a mn *+ b) mn a a b

2 ; 2
__1 2, mrm ‘mn\ (na “ikzz )12, (mm
—kzwp. kg + a Amn"'(a)(b)Cmn e kz+<a) Bmn
jk
+ (%)(%)Dmn e] z% cos -I—nf X sin % y . (A21)

1 PEY)mn _ (Ex)mn
jou| Bx oy

(Hz) o = -

jwu

m7 n7w
X —_— s — A22
cos —= x cos 2=y (A22)

75



[l

APPENDIX A — Concluded

Hence,
Hy = z Z (Hx) mn (A23a)
m=0 n=0
Hy = Z Z (Hy)mn (A23Db)
m=0 n=0
HZ = Z z (Hz)mn (A23C)

m=0 n=0
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APPENDIX B

PROOF THAT THE CONTRIBUTIONS FROM THE PROPAGATING
WAVES TO THE STORED ENERGIES CANCEL WHEN
THE VOLUME INTEGRALS ARE DIFFERENCED

That the contributions from the propagating waves to the stored energies cancel
when the volume integrals are differenced is proved as follows:

From equations (45) and (46),

S Y
- m=0 n=0

[Se]

2 v 2 2
+ ¥Ymén|Cmn| d + mzn =T Amn + 32 Cppp| d] = lim —aby Z 2k2, Cmo’
K - 16022 | 21
m 2 2
c2mmc ol -2k ICmOI d+ Z 2k Z‘AOml +2 A0n| - 2k lenl d
=1
2 2

2
Cmn 1

2
mme 0T, d—k2<‘A '2d+
mn b mn mn

M



APPENDIX B — Continued

where

2
2 .2 [n7w

2
SRS ¥, € 2 € 2
Y.
lim 204 Z >; (= n(-’?li’)@—”)Amnar (’L—”) +k2Con| d+ = k§+<m) Amn
-0 m=0 n=0 @®“1° | Kz ky a
2
() cmn 4+ cmen 2 Conn - §F A P - Um ) ) (g A 4
- =0 n=0

15 CR R TR L GRS C)

2 2
-t - -
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APPENDIX B — Continued

Rewriting equation (B3) yields

2 _
[- o] o0
Y. 2 V. € 2
lim —L“L-l 6 Z <3 men (?"X%”)Amn + (%7—7) + kg Cmn] d+ n2m kg + (%) Amn
d—o w kz
m=0 n=0 ¥ K
2

o0 o0

2
Cmn _am Amn d L abe z ;‘ Yn€m |Amn| d
b Tate 18 m=0 =0

ma\{n7 may
+ (T)(F)Cmn d + €€ e

2
2 Yy
+ Yantn|Conn| @ + 2T Ay + 20 Cpg| ) = lim 25 Z Amn|
k; ~ 1602 K m=1n=1k

M E XA ENA SR P A E A SRR - VA £ L T
a |\b b b b a J\D b b
2 2 2 2
2/m7 mm\~, 2 my\(nn\,.2 _ [(m7 2 _ [nm\" _ 2
2 2 2 4 2, \2 2 2, \2
mm\® | [am\® 2 24 _ g2(mm\" | [mm\® [mm\"/n7 2/mm\* _ /mm\"/nm
+<T> +<F> k +|Cmn| k 2k<a> +(a>+<a><b> +k<a> <a><b)
4 ' 2 2 2
(Bt i P(mry (AT 2TV (B4)
a a b b
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Hence,
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APPENDIX B — Concluded

a

Y,..€ 2 V. € 2
1 /J/mn (M)(%)Amn+ (I—l-b"—r> +k§ Cmn| d+ nm kg +<—niﬂ> Amn

(BS)



APPENDIX C
PROOF THAT THE BRACED TERMS GIVEN IN EQUATION (49) CANCEL

That the braced terms given in equation (49) cancel is proved as follows:

From equation (49)

- < € 2 ’ € 2
b Y Y,
m 2R ), ), =g o e pamn (5] i ema - 752 < (2
d_' m=0 n=0 ¥ H kz kg a
2 2
2 a b
nmw e -1

mmn mm
+ <—a—‘><—bﬂ>Cmn - GmEn

2 Cmn - 3~ Amn

A
a

2

- lim b€ Z Z
d_.oo 16

2 2 vy v
m’n{mzw nmw
-y _ € ‘Cmn‘ - Amn ++— Cmn
‘ mn k% a b |

-92d (M)z +(%.>2 _ k2
a 4 o0

2 2 2
x & = 1. lim —abz— z -2k§1|cm0' - 2(—’31> lcmol (C1)
2

d—-° 16w“u m=1

(Equation continued on next page)
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APPENDIX C — Continued

2 2 2 2
n 2
A0n| - 2<’bﬂ) ,AOnl - 2k IAOnl
2
2 2 '
2 14,2
—>Amn + (%) + k7 Cmn| - ) ky +<%7I> Amn
k,
2
mm/n7w m nw i 2] 2 2 2 1 mn nw 2
+TFCmn - Y Cmn‘FAmn +kamn, + k Cmn —iTAmn-*-chn
_aq|mn¥, o2
a b
< & -1 (C1)
_o|[mm 2 +[BT 2 K2
a b
where
" 3
2 _,2 mm
kpp =K - (T)
2
2 _ .2 nm
K2, =12 - <F > (c2)
kg =K - (HHI)Z - (M)Z
a b
J
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APPENDIX C — Continued

e V€ / 2 ’ V. E 2
.. ab 1 mnlma\n nw 2 nmijl,2 , {m
émfoTsE Z Z 2 2| 2 (Tﬂ)\f')‘o‘m“ (F) +kz(Cmn| - 2 kz+(Tﬂ> Amn
- m=0 n=0 ¥ K : '
2
z S
2 a b
* @)(%)Cmn - émén == Cmn - = Amn = -1
2 2
|
a b
oo ©0 2
i abe y A 2 2 Ym”nimn nfy
T s 16 & i [Arun| - Pt Conn| - 2 & matp Cmn
_aa|[mr\, ar\? 2
a b o o
2 2/
e 1_ 1 z 1 ‘ I <m7r) (mr
X =0+0+ lim - A ——
2 d- 1602y 2y 7y G|l T\ b)
_olfmm™  /nm\" 2
a b
2 2

(C3)
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APPENDIX C — Continued

Ym®n m7r/n77 n172 9

- LLLURTRLUARY.N

k2 (a \b> n* <b> + kz |Cmn
Z

2

-24\[[T 2+ nm Z_kz
2 ; ? v
c -1
" G-HEEX%E)Cmn - émén |~ Cmn - Pb—ﬂ Amn
-2 <M)2 N <M>2 12
a b
ol aTbée- E Z “"n‘m Amn! Ym®n Cmnl ) m2n aﬂ Amn"‘-b—ﬂ Cmn
d-—oo m=0 o kz I
2 2 9
soglfmmy (AT e
a b o
% € _l—hm ab Z z-—,mnzl_n_ﬂz_n_'n
d— 16w2 P K 2
-2\ mﬂ2+ Mz_k um—ln—l
a b
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APPENDIX C — Concluded

- VY. € 2 : Y. € 2
lim —Ea;)G Z . 21 513 n;n(m)/pﬁg)Amn+ (%) +k§ Cmn| - nzm k% +<?) Amn
e m=0 n=0 @ H ky \*® \ kz
z g7
2
m e -1
<‘El—ﬂ><¥>cmn = €mén r_na_w Cmn - %71 Amn
-2 (ﬂ)z + (M)Z - K2
a b
© oo 9 2 vy 2
be N m’n|m7 nw
- lim 2R€ Z e'A' ecl- Apg, + 2T C
doee 16 ZO : Yn®m |[*mn Ym®n [~ mn k% a2 mn mn
2 2 9
~2d\(BT) (BT g
a b
« € -1_ 0 (C5)
o\ (7 2 4+ [T 2 - K2
a b
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APPENDIX D
PROOF THAT TERMS IN EQUATION (61) CANCEL

In order to show that all terms in equation (61) cancel, first let

2
2y € 2 2y € 2
mnimsgn n 2 n'mj|, 2
{1}: _kzz__é_”F”Aanr(F”) +kICmn| + 2 kz+<%) Amn
[ 2 2
2 sin 2d k2 - ﬂ) - M)
m\/ng 2 b m7
+ (T)(‘g)cmn d+ - 2€mnén e Cmn
o\[2 - [m7 2 _ (nm 2
a b
- -
- -
2 2
. 2 (m7 nw
sin 2d{|[k” - {— —
v, [ BB, e wa P
- % Amn| [d- + 4¢mnén[ 5~ Cmn - £~ Amn| d (D1)
a\lk? - (M7 2 - (BT ’
a b
L 4
Then, let
~ _ -
2 2
sin 2d|fi? - (m) ; (M)
2 2 a b
9 K2 - [m7T 2 _{nm 2
a b
L ! i

(D2)

(Equation continued on next page)
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- -
2 2
o|  sin 2a|ii - <%11> @)
2y,
+ n21 nn;”Amn+%Cmn d+
K 2 /mn 2 nm 2
21k - [—] - [=—
a b
~
2
+ {47 &n|Amn| + 47,€,|Cmn d& (D2)
/
Therefore, from equation (61),
2
) oo o0 o0 sin 2d k2 - <m77> - <%T-> 0
X, v €
2, 2,0} 2, 2 e o),
m=0 n=0 m=0 n=0 9 [mn2  [nm\2 kz
2{K" - [—) -[—
a b J
_ 2 2
2 2y € 2
2 2 m
+ <%> +k; ICmn| + :2m kg + (f) Amn + <?><%E>Cmn
ya

2 2 2
0 sin 2d|lk (g) (r”)
N L * 2

mmw
- Cmn - 3" Amn

+ 2&men

(D3)
(Equation continued on next page)
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X (27nem

2
+ 2'}’m€n

Amn

Cmn

2 2v.7
+ n21n%‘:’*mn""rll)—wcmn
ks

)

(D3)

(D4)

+2

NL

. 2
21“z1lcm0

2
i cmol (D5)

(Equation continued on next page)
88



APPENDIX D - Continued

3 Ny
2 nw 2
o sin 24{lk™ - [—
- 2K ‘cmo‘ + ) 2 212 A0n|
n=1 9 kz ) <_I_1ﬂ>2
b
L. -
[ ]
2 2
. 2 ma nm
) . oo sin 2d k™ - (T) - <—b—) .
nw
+ 28T Agy| - 2% |Agy| v ) ) 2as 2
m=1 n=1 2 kz ) M 2 ) nn
a b
2
1 2 1 2
(L @X%Am“ <%> 12 Crnn| + L2 (@l) Amn
= =
2 2
ma\/nm mf nm 2 2 2 2
+ a chn + Tcmn 'B‘Amn k IAmnl -k ‘Cmn|
2
kK \mn nm
k2 a
7,
where
.
K2 - k2 (m7
z1 a
2
2 .2 nfw
kpo =K - (—b—> 5 (D6)
k2 = g2 - (m7 2 o\?
4 a b
J
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APPENDIX D —~ Continued

Substituting equations (D6) into the right-hand side of equation (D5) yields

), )

m=0 n=0

(-

ANZE

90

2 2
o qukz (== -
a b

s,

1n=1

o0
0+0+ Z

m=

d+

+kz+kz

) <?)2k2} N 2Re<AmnC:rknn) <?) (%79 (%ﬂ)z

R SRR

+k; (D7)

2 2
m 2,2 27
(5 -2 )

-
sin 2d\lk2 -
a+

(D8)

(Equation continued on next page)
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2 4 2 2 2 4
4 _ gp2fnm\” | (o7 2(nm\" _ (m7)/mr\ _ /mr\c 4
e 5 I 5 v I v G v I

2 2 2 2 2 4
+ k2<m> + k2<M> - (!-nﬂ> 12 +|Cmn| i - 2k2<ﬂ"l> + (M)
a b a a a

T A (5 (T e

2 2
2/n7 2/n7
+k<b> k<F> (D8)
Hence,
NORSOR =
ms= 0 n=0
Now let
2 2
2 Y € . 2
{m} Impimror, (gl) e S (g)(ﬁcmn
Z
-
o¥is 2 2 2
~2d < > < ) K sinh 2d\]<m> . (9_7_’) 2
a b
ma
X e -2d - + €mén|—5— Cmn
() -
a b
L -

(D10)
(Equation continued on next page)
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-
m nnw 2 2
, T <a > ( > k sinh 2d\<-‘;l7l> +<¥> - ¥
- % Apn| e 2d - - demén| 5t Cmn
mr\2 + (BT 2 - K2
- -
_ad|jfmr\?, ar\?_ 2
2 & b
and
(‘
2 2 9
-2d <m> +<E7_T> -k
a b
2 2
{IV} =J -)’nfm Amn - '}/men lcmnl e
"
r 2 2
sinh 2d||{TT\ 4 (BT _ 32 5
m’n" {m7
X -2d + mn
2 |2
2 2 kz
m1r nmw 2
—1 +[(—] -k
&) ()
2 zr 2 i
my nw
, 24 < > +<—> k sinh Zd\kﬁ’l) +<M) - K2
a b
m7 2 + (b7 2. K2
a b
- -
(D11)

(Equation continued on next page)
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: 2 2
A7
a

\

~"

2 2
2
- 4K (‘ynem Amn| + Ym¢n Cmn ) e : d (D11)
Py
Then, from equation (61),
- -
2 2
o . sinh Zd\k%) +<%> e
€
Z ;\III -k2 v =Z Z -92d - yman
- 9 a b mn
m=0 n=0 m=0 n=0 2 2 kz
m7 ny 2
—) +{—) -k
=) ()
2 2

2 Y. € 2
nnw 2 nnil, 2 mm mm\/n7
+ <—b> +k, Cmn| + 3 kz + <—a ) Amn + (—a X—b)cmn

2 2
m n
+ Gmen T Cmn - _bﬂ Amn k '}’nen‘Amn + ')’nen Cmn‘
_oq|[mr\?, fam 2_k2
4 2 * b
m’'nimu n
k3
. 'ymen.mﬂ nmw nmw 2 s
Since the term <=z 5 + . Cmn in equation (D12) is identical to the
kz

same term in equation (D4), it follows that

i i {III}-kz{IV}=O

m=0 n=0
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APPENDIX E
EVALUATION OF THE INTEGRALS SHOWN IN EQUATIONS (70)

Consider the integral given in equation (70a) as

/2 a'/2 \'
‘g Sﬂ —2 sin k<§—,y’|>sin-n%y-dx' dy’

ke ke l nmw b
sin — cos k - cos — sin k sin =dy"'
<1n2 [Y’ ) 1 Y) b(Y +2>Y

/2 - '
=V S‘ sin X cos kly'l - cos ¥ gin kly" sin 2 cos BT 4 cos —7TL sin 27 )gy*
0 o\ 2 5 b 7 b

=V S‘ (sm — cos ky' + cos % sin ky) <sin 9—7{)&' cos % + cos n_ZL' sin n2—7>dy'

0/2
+§ <sin Bzﬁ cos ky' - cos —1;—!1 sin ky'><sin n—7tT)L' cos % + CcoSs 1_1_1%;y_' sin %)dy' (E1)
0

Now let y'=-y' in the first integral so that

2/2 /2 v
yy'=-fz/2 5:l= -a'/2 Fokes k<— i D sin - dx' dy’

/2
=V, S‘O <sin Ezﬁ cos ky' - cos % sin ky)(-sin 1—11{)&' cos 22-75 + cos n_%z: sin %)
+ <sin -1;—2 cos ky' - cos 1§2£ sin ky)(sin Plg—' cos %7—7 + cos n—T{DL' sin Ezlf_> dy'

2/2
k{ . nuy’ . ki nm nry'
=V, S‘O ( sin 5= cos —2— cos ky' sin —Z}L +sin == sin = cos ky' cos —Y)L

+ COS % cos % sin ky' sin -Iﬂél - cos k—; sin 22X 5 T sin ky' cos —EL + sin 52! cos 22 2 (E2)

(Equation continued on next page)

94



APPENDIX E -~ Continued

1
X cos ky' sin 9—%1'- + sin -kig- sin % cos ky' cos n_717)zl - COS -l—;-ﬁ- cos %ZT- sin ky' sin Elg—

- cos % sin % sin ky' cos M}-)L'> dy'
/2
= V,2 sin % sin %S‘ cos ky' cos n_1tr)L' dy’ (E2)
Since
2/2 s1n<k - %‘T—)% s1n(k + %)%
|
S cos ky' cos XY dy' = +
0 2(1( , M) 2<k + E-)
b b
- 7
nmw m £ nm _. n\ ¢
B (k + —6—>s (k - b>§ + (k F—)sm(k + F)Z
)
?- )
b
L -
0/2
= -2 cos XL gin %’- sin ky' cos “_7{)11 dy! (E3)
0
and
cos(k - Eﬂ)— cos(k + M>£
dezsinky' cosmdy'=—-1- < bz+ b2- 1 _ 1
b 2| p_nom k 4+ BT k-D3T .07
b b b b
k+ﬂcosk-i-£+ k—mr-cosk+M£
b /2 b b/2 -2k
= (E4)
¢ (% - ()
b b
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APPENDIX E — Continued

Making use of equations (E3) and (E4) combined with equation (E2) results in

!2/2 a'/2 v
SY'= -0/2 S'x'= -a'/2 -a,i')- sin k(% - !Y'D sin E‘Bﬂz dx' dy"

VosinBL[ ) 0 ‘ 2 ¢
= ~—————— | sin — ksink--r—lﬂ—+sink+-n—”- +nﬂsink--rlz>—-sink+9—1-r-—
b/2 b/2 b /2 b/2

kz_mz b
b

k¢ nm{ nm/f nmw nm nm{
—— (K k - —|= k + —i= = k- =—=|]=- k + —=|=| - E
+ COS 5 cos( )2+cos< + )2 + cos( )2 cos< + )2 2k (E5)

Using trigonometric identities,

S&/Z S-a'/Z ZQ sin k<—21i - ’y'D sin n—gx ax’! dy'

y'=-0/2 Yx'=-at/2 @'
Vo gin 07
=—-—-—2ksin2gcos-n—”£+coszgcosﬂ-ﬁ— - Msingcoshﬂ-sinﬂg
9 mTZ 2 b 2 b 2 2 b 2
&
b
- sinﬁcosﬁsinﬂ-q- kcosl{—ﬂ
2 2 b 2 2
Vo sin BT
=2 9lkcos 2T L xcos KL (E6)
9 2 2 2
=
or for n even,
2/2 a'/2 Vv
S‘ g ——?—sinkg-ly'| sin 2T gx' dy' = 0 (E7a)
y'=-2/2Yx'=-a'/2 2 2 b
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APPENDIX E — Continued

or for n odd,

’ n-1 ny £ ke
n-_ cos —% = - cos =
£/2 a2 Vo o N nmy oy ey 2 b 2 2
— sin k—-|ylsm dx' dy' = (-1) 2V k
Y'="ﬂ/2 xt= _a_v/z a 2 b k2 ) (M)Z
b
(ETb)

Now consider the integral given in equation (70¢) with y = -g +y' and x = % + x!'

0/2 a'/2 v
( g —2 sin k<—§ - |y'|>cos m%x_ sin P_%TZ dx' dy*

X'=

0/2 a'/2 \%
=‘§ S\ —?sink-g—,y"cosm§+x'sinMP-+y' dx' dy'
'—-Q/Z t _av/z a 2 a \2 b \2

Vv £/2 t '
= —?g sin kg cos kly' I - cos k¢ sin kly" sin &7 cos 2 | cos 27 gin 2
a' Jyr=_y9/2 2 2 2 b 2 b

a'/2
xS‘ cos BT g MIX' _ o) TT o MAXY) e dy' (E8)
x'=-a'/2 2 a 2 a
Since
a'/2 a'/2
m7 . m7x' . mm m7x
a'/2 cos —— sin sin — cos
' _ 2 a 2 a
S‘x'= -a'/2 o mn * mr
a
-a'/2 -a'/2
a'/2 2 cos BT gjn M7
x'=-a'/2 mn

a
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APPENDIX E - Concluded

Hence, equation (E8) can be rewritten as

2/2 a'/2 V '
S § -—°sink—-‘y'|cosmﬂxsinﬁﬂdx'dy'
y'=-ﬁ/2 x'=-a'/2 a' 2 a b

2 cos i sin mra’ cos nr 4 cos kg
ol —v = s
. 2 22 0 g gin 2T B 2 2 (E10)
m7 ' 2 nfw 2
k4 - (17
: >)
0/2 a'/2 A"
S\ g —'O sin k L. l y'!>cos M7 sin MY gx! dy'=0 (n evenor m odd)
y'=-£/2 xv.__av/z a 2 a b
(El1a)
0/2 a'/2 \'
g\ 5 —osinkg-ly'lcosmﬂxsinn—”y-dx' dy'
Jy'=-4/2 vx'=-a'/2 a' 2 a b
%1 % sin n;na' cos % -;i - cos I;Q
=(-1) © (-1)“4Vk a " (n oddor m even)
. a! ms 2
a K2 - (BT
b
(E11b)

where the y' integration has been evaluated as in equation (E8).
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APPENDIX F
APPROXIMATION FOR a' <<a IN EQUATIONS (81), (82), AND (83)

Rewrite the summation terms given in the expression for the difference in stored
energies beginning with equation (81) (coth = 1) as

nnl Ko\ ‘mra’ ) k¢
oo _ XX =%} [’} . it nmw
;‘ _ (cos 5p - €05 5 ) v sin (cos T ) 1
= ~3/2 mya' 2
n=3,5 m=2,4 n=1 2 2 nm 2
’ <n1r>2 K2 ’ ’ 2a . <__m1r> + <M> - k2 (F) -k
— ~ a . b
b
k¢ 2 2 W
) (cos e oos —) © sin 174
_ Z 2b 2 1 L2 Z 1

2
2<cos 727—% - cos %) 2. [sin r1127ra' 1
¥ 2 m'lra“'1 (F1)
B2 N g
a b
sin mra’
Write the function -~ 2? in its integral form (the integral from whence it came)
7a
2a
as
a' 2
. mq
51n a'/2 a'/2
——2? =i,S\ os—nﬂg+xdx1,§ OSM<3+X' dax'
mna a'J_ar/2 2 a'J_j1/9 2
2a
a'/2 pra'/2
=1 S csm<g+x>cosM§+x' dx dx' (¥2)
(a')z -a'/Z _a'/z a \2 a \2 .
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APPENDIX F — Continued

t
Let x = %’5 and x'= Ezi, so that

2
sin mrma' 1 1
__%a | _ l‘g‘ § cos 2 (3 4+ a'x) cos —(a +a'x') dx dx' (F3)
mra' 4J.1d1 2a
2a '

Expand the cosine product

maa' . . '
cos 2T (a + a'x)cos 22 (a + a'x") <cos M7 cos BMAX _ gin BT gin m”—ax><cos mn

2a 2a 2 2a 2 2a 2
m 'X' . A Iyt
Xcos_lra__- 51nE.7_Ts]_nM
2a 2 2a
L} It
= cos2 2T cos BMAX 055 MM X _ gin BT cog 1T
2 2a 2a 2 2
mma'x . mpa'x! m7x' . mpa'x
x [cos ZLT sin 2T + cos X i ITa
2a 2a 2a 2a
?. 1v1?
+ sin2 M7 gjp MTAX o3 MTA X (F4)
2a 2a

Substituting equation (F4) into equation (F3) gives

2
mya'
sin 2274 1 A1 ,
R lg S\ cos2 T ¢og MTA'X (o MTAX 4y dy'
mma' 4J_ 1. 2 2a 2a
2a
S‘ S‘ mﬂax cos MTAX 40 s
2a
S‘ S cos m'na X cos m7;a'x' dx dx' (m even) (F5)
a
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APPENDIX F — Continued

Consider the summation in which n =1 (last term in equation (F1))

9 2
) k¢ . mma' g
9 LA £X) =
(cos 5 cos 2> z sin 95 1
mma'

2
T 2 m=2,4 2 2
) T )

2 ' ' ']
2<cos -g—bg- - cos %) 1 1 00 mﬂa X cos mga;x
) g 5 Z dx dx' (F6)
2 0 5

‘B

The summation on the right-hand side of equation (F6) is approximated by replacing

m=2,4 <m17>2 (n)z 2
— +{-] -k
a b

2 2
1 with —— since (2T} >|(T} - x2 ; therefore,
2 2 = 2 b
a
a b
g k¢ "\
2 K¥ o0 mna
(cos 5 cos 2> sin == L
2 m7a'
(ﬂ) K2 m=2,4 5 <m7r)2 (77)2 9
b +[{=) -k
a a
[ s mma'x maa'x
2(cos T ) cos
mn

The summation on the right-hand side of equation (F7) can be summed in closed form by
rewriting as

00 m7a'x mya'x' mra'

00 mra' 1 - !
Cos —5—=cos —5—— _a Z lcos———za (x + x'") + cos o x -xm
mw T 2 m
m=2,4 = m=2,4
o Jm‘ir.':l (x+x") ijb'(x-x')
_ipe ) e re 2 (F8)
T 27 m )
m=2,4
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APPENDIX F — Continued

Consider the following sums (see ref. 19):

i ejmx = -ln <1 - ejx) | (F9a)

and

= -In (1 + ejx> (F9b)

where the last and first are written, respectively, as

- ]m(x+1r) = jmx = jmx
- € e - ix
Z Z =+ Z - In (1 +e ) (F10a)
m=1 m=1,3 m=2,4
and

= ]mx < jmx < jmx

S‘ £ Z & __ 4 ; & - n (1 - e]X> (F10b)
Lt m - m
m=1 m=1,3 m=2,4

Now, add the two series of equations (F10)

" imx ; i i3 5
9 Z € = -In <1 + eJx><1 - e]x>= -1n|2e 2 cos g 2(-j)e 2

m

m=2,4
-{Incos}—(sinE +21n2+jx-z =-1nlsinx +21n2+jx-ﬂ
2 2 2 2 2

sin X
2

L
(F11)
& jmx
z € =--1—1nsinx+1n2+jx—E ' (F12)
m 2 2
m=2,4
N ejmX 1
Re Z = -=(In sin X + In 2) (F13)
m 2 :
m=2,4 '
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APPENDIX F — Continued

Therefore, replacing x by %(x +x") and %(x - x"), equation (F8) becomes
©  eos mua'x cos mya'x'
Z 2a 22 _3a -1 sinLa'(x+x')+1n2
my 27) 2 2a
m=2,4 a
_1 In sinﬂa—'(x -xY+1n 2
2 2a
=-2/2m2+In sinLa'(x +x" + In sinf-a;'(x - x")
47 2a 2a
= -209 In2+ In1fcos TAX _ cog TAX! (F14)
47 9 a a
y2
For small values of y (cosy =1 - 5 )
It
©  eos mr7a'x cog MTa'X 9
Z 2a 2a ~ .2 21n2+1n-1-—1-<zr—a—'> 'x'z-le
m=2,4 a
~ 29y (ﬂ) +1In |x'2 - x2| (F15)
a'-0 47 a
Therefore,
[ ke 2 ' 2
s ) ... mua
cos — - =
\ ( o cos 2> Z sin 5 1
- 2

(F16)
(Equation continued on next page)
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APPENDIX F — Continued

- ml
COS =— -
= 2( 2b S\ S 21n )+1n|x'2—x2|] dx dx'
a'-0 T
(b)
(c 7l k(¢

2
0S — ~ COS >
-2 sz 2 {21n<%'>+21n2-3}
a'-0 47

5) ¥

~
~

Next, consider the case when n > 1; the summationon m is

, 2
co s mua
5 Z S0 Toa 1
mra'
m=2,4\ o2 \J(mw>2 <n1r>2 2
— +[—] -k
a b
k¢ 4
1,1 ©  cos n127;a X cOoSs n;gx
=2 g Z dx dx!'
—_—\ + -k
a b
L J

1
m”a (x +x") + cos BT (x - k)

1 1 S, cos
N B
00 =
m=2,4 mwz mrz 2
—1] +[—) -k
a b J

(F16)

(F17)

2
The approximation made for the case when n =1 is not valid here since (%) is not

always greater than

P_Wz_kz
b 2
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APPENDIX F — Continued

to convert this summation to a more rapidly converging series, use is made of the
Fourier transform (ref. 19):

S~°° Jwy+y")

- dw = ?Ko [a(y + y')] '(_F18)

w” + a

where Ko(ay) is the modified Bessel function of the second kind, and of the definition of
the Poisson summation formula

Z S<%£> =% Z f(2ma) (F19)
-0 m=-

where f(y) is the Fourier transform of S(w). (See ref. 19.) Convert the series to be
summed by means of Euler's identity as

o mpa' maa' (o _ o % TR ey TR
Z cos 5= (x + X) + cos 5o (x - x") Z o 2a Lo 2a
m=+2,+

m=2,4 <2£>2 ] (Mf 2 4 \[(mf . (M>2 2
a b a b

DO |

.mya’ .m7qa’

E i e] %a (x+x") +eJ 5a (x-x)
3
m=0,+2 2 2
\f<’-“-”) () -+
a b
S S (F20)
(F21)
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APPENDIX F — Continued

By replacing a with a/2, even terms are obtained thusly

oo .2m7ry o n7ry

- ),

mOil n=0,+2
2m1r +a ’ ”nw +a

Applying this result to the case at hand, equation (F20) becomes

=1ISD

Z Ky(ay + ma) (F22)

x - x") = 2
2a =2iz Ko (_r;)_'n) 2a(x+x')+ma

(F23)

The modified Bessel function of the second kind decays rapidly as the argument increases;
therefore, m = 0 should be sufficient so that

o0

mma' mnma'
cos 5 (x + X") + cos 5 x-x" a o 9 2 a
- orm - '
Z . - 27T KO (b ) (x +X )
m=2,4
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APPENDIX F - Continued
Hence, equation (F17) becomes

2

00 ... mya'
sin 1,1 2 '
2 Z 2a 1 =§§ 2 (Ko | |[(BE -2 2 (x 4+ x)
3,4\ BT 2, 2 0 Yo |27 b 2
AN T2a mr\* _ (nm\® 2

a b

-\ dx & (F25)
nm 2 - K2
b

For small argument, Ky(x) = -(‘y +1n %),

= Sin m7a 1 -1
2 22 1 zg S‘ 2/ 9y+2m2
mr7a 0 Yo {27
m=2,4 2a 'm7 2 L (om 2 - k2
a b

2 '
-1ln <M> - k2 2 (x +x"

2
- In (M> k2 x| v — L | ax ax!

(F26)
(Equation continued on next page)

107



APPENDIX F — Continued

~In Ixz - x'zl -

(F26)

where vy is Euler's constant = 0.5772157. Therefore, the summation terms in the
expressions for the difference in stored energies become

2
s <cosg—?-cos-1§£) 1 2 o
zz 2 /3 _2,-21n (%—)-ka?
n=3,5  (nn\2 |2 T
b
\ i k{

2
<COS — = COS —)
2b 2 li21n<%a'>+21n2-3}

(F217)
(Equation continued on next page)
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APPENDIX F ~ Continued

2
> cosn—”g—cosl—‘:—%) 9
E2 z ( 2b 2/ {3-2y-21n (M> KL
27 2 2
n=3,5 om\” _ 2
b
2
(COSﬂ—ﬂ-COS-IEg-> .
+ 2 2b 2/ 12 1m (l;l>+21n2-3 (F27)

2
m k2_£2
b

Hence, equation (81) is now written as

2
2
4‘Vo‘ Kk <cos % - cos -k;-> 9 . 2
Z“’<<<Wm>> - <<We>>> ~_L cot {(k" - (=1 d
abZ, 5 3/2
-]
b

2
w -
.2 Z (cos2b cos2> g-y-ln Mz_kzi‘l
m 2 2 b 2
n=3,5 nm k2
b
2
8|V0| T ) . |
- —{Si(ke) + |Si(ks) - = Si(2kL)| cos k¢
2 4 2
2m°Zq4
1 e3/2£
+|Cin(kY) - 5 Cin(2k¢) - In S sin k¢ (F28)
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APPENDIX F — Continued

Using the same approximation, the representation for 2w (<<We>>) (eq. (82)) is

2 ¢ ko\2 [ 7l ko\2
3 T
ofvofs?feon 2 - cos X 2 ] feos B~ cos 51
~ 2 T a 2b 2
2wl<<W, >>) = . -cot \(k™ -{=] d|-=
o e ) abZ, 51572 (b) T o2
’-kz - [ k% - (T
L b b

niwd ke

] <cos—-cos )
t
x[ln(—ﬂ:>+1n2-%}+% Z 2b 2

2
, 8,V
ax| s —9-|-—E Si(k?) - ££ Cin(kg)

+ (k£ - sin kf) In == e!Z {Sl(k!l) - = Si(2ke) - [Cm(kﬁ) Cin(2k!2)]

- k¢ 1n,2} cos k¢ + {Cm(kﬁ) - = Cin(2k#) + — 5 [Sl(kﬁ) - S1(2k£)]

+ In Z} sin k£> . (F29)

Equation (83) is therefore written as

r i k¢ 2
4|Vo| (cos 26~ ©%° 2_) 24 cos? |12 _<ﬂ>2 q

w3 Zw(«w >> - <<W >>>] - - k°d cos
dw abZ0

(F30)
(Equation continued on next page)

110
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(‘
7wl ke
! 9 COS — - COS —
+ cot \|k (b) d<k£ sin 5 ; 372
K2 - (X
b
\
2
md _ k¢ 7l .3
] 3k2 cos T cos 5 . (cos 55 cos 3 )
) 3/2 5 3/2
K2 - (T K2 - (I
b b
g k¢
COS — ~ COS —
a wa') 3 . ke 2b 2
+=|In|l—=—] - =<+ In 2|(k{ sin =—
’T[ (a 2 } 2 o /n\2
K- (X
5
(cos I - cos k >2 (cos LES cos H>Z
2k2 2b 22 . 2b 2
2 2 (17)
2 7 k -
k¢ -(%
-] "
2
=, (cosn—ﬂ-g-cosl—{-g> . 9 a1
+% 2b 22 + -3—~7 In (%E) k%—
n=3,5 [m 2
o
b
L ke £ k4 2
cos -%7{)— - cos 5 9 (cos 1—121{;— cos —5-)
x { k¢ sin &2 2k

(F30)
(Equation continued on next page)
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2
(cos -I;”Tﬂ - cos -l%g) 3|V0|2
+ - - 5 %kﬂ -[Si(kz)
<_n_7r>2 12 2m“Z,y
b
i
3/4£

-1 Si(zkz)] sin k¢ + |Cin(k() - L Cin(2ke) - In &
2 2 2a'

X cos kf + sin k¢ (F30)
Rewrite equations (F28), (F29), and (F30) as
4|V0|2 (COS gibﬂ - COSs %)2 2
2w<<<Wm>> - <<We>>) & cot\|1 - =} kd
(ka)(kb)Zq 2 kb
1- (1L
%
(cos 2L - cos )
+ka 2kb 2 [ln <7Tka'> +In2 - Q} +
m 2
1-/2
(%
i (cos nrk{ s k—£>2 ]/ 2
< 2kb 2 %- - In (%) -1k_;l
n=3,5 nn 2 -1
kb
2
8|V0[ T )as . 1 ..
S—= 3 Si(ke) + |Si(ke) - = Si(2k#)| cos k¢
(2m*“Zg 2 :
- 3/2 :
+|cin(ke) - 1 cia@ke) - 1n EKL ) gin ke (F31)
2 2ka'

112



2w(<<We>>) =

W ———
ow

APPENDIX F — Continued

2 ke kﬂ)2 1k . kﬂ)z
4lv0| (cos kg - €05 3 et \l - (T 2 ol k2 (cos 2%~ %% 5
(ka) (kb) 5 5/2 kb 1r 512

- (B 1-{1
kb kb
2
0 ( nmk{ kﬂ)
CcOS - COS —
X{l ﬂli(;'>+ln2 -—}+% Z 2kb 2

2
3 nmw
X —_ - - —_— ~ —_—

1 ka'

8 |V0 \2

oz < i (k) - k“ Cin(k2)
™

+ (K¢ - sin k0) In e:ﬂ {Si(kﬂ) - % Si(2k2) - };—‘C[Cin(ka) - Cin(ZkQ)]

- kfIn 2} cos ki + {Cm(kﬁ) "3 Cin(2k¢) + — [S1(k£) - Sl(2kﬂ)]

+ 1In -2-} sin kﬂ>
e

8 [mu(«wm» - <<we>>)j|

ofve|

(ka) (kb) Zo )

(F32)

(¥33)
(Equation continued on next page)
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(‘
7 \2 ! ) S%'Cosl{z—ﬁ
+ cot 1-(—) kd{kf sin ==
kb 2
23/2
1- (X
)
~
2 2
-2<cos-727—11:—§-cos k?£> +<cos727—ié-cos %—)
25/2 23/2 ?
1-(1 1- [0
kb kb
J
(‘
7k ke
ka | frka') 3 ke o %y
+Tln(ka)_§+ln2<k£5mT .
1-{~
%)
.
\
2 2
2 osﬁ—kﬁ— os-lsg cosﬂ—cosl—{g
2kb 2 2kb 2 P
- +
22 T 2
- (& ()
[ (kb” N
\
r
o cos n7Tk£-cos-lig 9
Lha 2kb 2 <3_ 1 nm _lka'>
T 9 277" ke 2
n=3,5 nm\” _ 4
kb
L y,
(F33)

(Equation continued on next page)
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APPENDIX F — Concluded

2
g S8 ‘;"17{1;1 - cos 1;2 (cos 112117{1;2 cos -1-;&)
X (kf{ sin — +
2 (mr 2 2
"
L [ kb
-
\
cos DL | oo KL 2 2
2kb 2 8|Vo| 7
+ -—_Z ko{-1|Si(ke)
2 2 4
(M) -1 (2m 2,
kb
~

3/2
- Y si(2k0)| sin k¢ + |Cin(ke) - 1 Cin(2k0) - In e—kﬁ>
2 2 2ka

x cos ki + Siﬁgkﬂ (F33)
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